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Abstract. We consider a generalized model of neural network with a fuzziness and chaos. The
origin of the fuzzy signals lies in complex biochemical and electrical processes of the synapse and
dendrite membrane excitation and the inhibition mechanism. The mathematical operations included
into fuzzy neural network modeling are: the scalar product between inputs of layers and synaptic
weights is replaced by a fuzzy logic multiplication, the sum of products changes to the fuzzy logic
sums, and the operators such as supremum, maximum, and minimum are presented for a fuzzy
description. The algorithm of varying membership functions, built basing on a backpropagation
paradigm and a method of fuzzy neural optimization, has been considered. Both fuzzy properties
and a chaos phenomenon are analyzed basing upon experimental computations.
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1. Introduction

The preliminary analysis of strong nonlinear feedbacks including the cases of bistability
showed the appearance of new neural network properties, such as bifurcations, quasi-
periodic oscillations, chaos presence in (van der Masset al., 1990; Gupta and Rao, 1994;
Fukai and Shiino, 1992; Garliauskas and Gupta, 1995; Garliauskas, 1997 and others).
The outstanding works of Zadeh, 1965, 1968, Gupta, 1989, Kaufmann and Gupta, 1991
are linked with neural network fuzzy properties which are wide used in our search. The
bistability of a dendrite membrane state considering dynamic processes in the synapse-
dendrite complex is related with the saddle point stability area because these processes
are not sufficiently determined under weak fluctuations which causes the situations of
fuzzy logic interpretation. The model of a neuron as well as fuzzy logic ideas are ex-
pressed mathematically in the most general form in the works (Gupta, 1989; 1992). The
origin of the fuzzy signals lies in complex biochemical and electrical processes of the
synapse and the dendrite membrane that can be classified into two groups: the first group
is associated with the impact of mediators when transferring the potassium, sodium, and
chlorine ions in the synapse and the dendrite membrane in the cases of excitation, inhi-
bition, and silent inhibition; the second group is connected with a nonlinear or bistable
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mathematical representation of electrical processes causing the formation of higher order
fuzzy sets. As a result, due to the fact that learning images are frequently fuzzy distorted,
e.g., fingerprints in criminal cases, images from space, handwritten characters, etc., the
creation of fuzzy algorithms is a perspective way. Therefore in the investigation was ex-
pedient to do a further generalization of fuzzy artificial neural networks (ANN) basing
on fuzzy properties.

2. Fuzzy Backpropagation ANN Algorithm

2.1. Fuzzy Statement in ANN.

The main theoretical background of the fuzzy logic was set by L.A. Zadeh (1965). The
first fuzzy algorithms for the decision-making have been developed in his and joint with
R.E. Bellman issues (Zadeh, 1968; Zadeh and Bellman, 1970). A notion of a graded
membership became the fundamental characteristic of information arising from a human
cognitive process. A man always uses simple linguistic constructions such as small, big,
large, many, medium, substantial, approximate, etc. There are no crisp boundaries among
different cognitive classes or sets. Such a fuzzy statement is valid completely for neural
systems in the brain-making mechanism as a human reasoning capability (Gupta, 1992;
Zimmermann, 1991; Gupta and Rao, 1994). Here, contrary to the simple binary set theory,
the fuzzy set theory describes events that either do or do not occur. This is partially similar
as in the probability theory with measuring of an event occurring by probability, only in
the fuzzy logic a relative graded

membership is used as a function of thinking and cognitive processes. The fuzziness
of cognitive classes or images is not estimated by grades of membership appearing be-
tween a fuzzy and nonfuzzy situation. Note that a mathematical technique dealing with
the description of fuzziness is quite different from that used in the probability theory.

2.2. Fuzzy ANN Architecture

The architecture of fuzzy ANN, as usual, is in related with imprecise values of input data
and ill-defined actual states inside neuronal structures. The main sources of uncertainty
and fuzziness in neural networks are as follows:

(i) a fuzziness that takes through a fuzzifier on the input data or forward from impre-
cise information, voiced signals, images, initial conditions of control systems, etc.;

(ii) fluctuations in the biochemical mechanism of synapses through activations of
transmitters, number of sodium, potassium, and chlorine channels during bursts
of sustained activation;

(iii) ill-defined somatic relations inside of the neuron through membrane channels and
their changed plasticity;

(iv) inner chaotic phenomena of ANN defined by bifurcation parameters and their be-
havior when by interchanging between two frequency mode processes.

The fuzzy NN block diagram is presented in Fig. 1.
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Fig. 1. Fuzzy NN block-diagram.

There is a block of a fuzzifier interface fuzzifying boundaries of input data or entering
linguistic constructs which are joined with the input data set. Another block of fuzziness
sources can be the fuzzy weight one according to item (ii) and presented as a fuzzy weight
inference structure. An important implication possesses the fuzzy processes inside an in-
dividual neuron and neural network in general according to items (iii) and (iv). The output
after the fuzzy NN mapping must be defuzzified in the defuzzifier block to compare with
a desired statement and to define the global error to be minimized through the feedback
adjunction procedures. For a desired fuzzy desired statement, the Hemming or Euclidean
distance can be used instead of the defuzzifier.

2.3. Fuzzy NN Algorithmic Structure

We build a fuzzy NN algorithmic structure close to the fuzzy backpropagation paradigm
because it involves a feedforward characterized as a static process and a feedback as a
dynamic one (Fig. 2). In the feedforward trace, the fuzzy logic or fuzzy arithmetic opera-
tions can be used, and a defuzzifier elaboration in order to match up to a nonfuzzy desired
statement or to a fuzzy desired one. After evaluating of the global error, the feedback op-
erations are to be set in dynamics. Inside of these algorithmic procedures, the different
fuzzy sources must be mapped and an iterative procedure can be continued.
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Fig. 2. Fuzzy NN algorithmic structure.

2.4. Mathematical Fuzzy Modeling on Backpropagation

The multi-layered neural networks (MLNN) are most propagated neural systems which
mimic certain appropriate brain-style portions well and very frequently apply in differ-
ent technical areas, such as pattern/image recognition, system control and identification,
biometric systems and many others. Any MLNN consists of an input layer, one or more
hidden layers and an output layer. It is schematically presented in Fig. 3 where a feedback
trace is pointed out too.

If to note only a feedforward trace, the input-output mapping can be mathematically
represented as follows

Y(t) = Nn[Nn−1 . . . [N2[N1[X(t)∈Rn]] . . .]∈Rm, (1)

whereRn is ann-dimensional space of inputs data, andRm is anm-dimensional space
of output state parameters.

Further, consider three-layered NN (output, 2 – hidden, and input layers) and a train-
ing algorithm when input data and weight sets are fuzzified. Such a fuzzy NN deals with
a mapping of the input fuzzy sets defined asA∈Rn which are characterized by a mem-
bership relationµL: A → M labelled by linguistic variables from the setL. HereM

Fig. 3. Multi-layered neural network structure.
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is a membership space and it is a one-dimensional space in the interval [0,1]. Note,n

advance, that the mathematical operations, included in fuzzy NN modeling, are:

(i) the scalar product between inputs of layers and synaptic weights is replaced by
fuzzy logic multiplication;

(ii) the sum of products (i) changes according to the fuzzy logic sum;

(iii) the operators as supremum, maximum, minimum will be used for a fuzzy descrip-
tion.

The three-layered NN was composed of layers with inputsx̂
(·)
k and memberships

µA(x̂), outputsx(·)
k andµB(x), weightswlk andµC(w), thresholdsQ(·)

k andµD(Q),
biasx(·)

0 ∈A. We also assume that all input data are summarized in the inputs of the first
layer. There are appropriate setsA, B, C, andD of spaceR. We include new symbolic
notations of the logic conjunction

∑∧ and logic disjuntion
∑V , where symbol

∑
is not

an algebraic sum and it is not a simple sum and expresses only as a short definition of a
sequence of logic operations.

Then, for the outputs of the input layer we obtain

µA(x(0)
s ) =

∣∣∣ϕ(−1)(x(0)
s ) ∧ µA(x̂(0)

s ) − µD(Q(0)
s )

∣∣∣ , s = 0, 1, 2, . . . , n, (2.1)

where ats = 0 it means a nonfuzzy bias withµA(x̂(0)
0 ) = 1.

For the output of the first hidden layer in the origin, we have to define the memberships
of input data of layers as follows

µA(x̂(1)
l ) =

∑
s

V
µA(x(0)

s )∧µC(w(1)
ls ), l, s = 0, 1, 2, . . . , n, (2.2)

and of the output one

µA(x(1)
l ) =

∣∣∣ϕ−1(x(1)
l ) ∧ µA(x̂(1)

l ) − µD(Q(1)
l )

∣∣∣ , (2.3)

for inputs of the second hidden layer

µA(x̂(2)
k ) =

∑
l

V
µA(x(1)

l )∧µC(w(2)
kl ), k, l = 0, 1, 2, . . . , n, (2.4)

and

µA(x(2)
k ) =

∣∣∣ϕ−1(x(2)
k ) ∧ µA(x̂(2)

k ) − µD(Q(2)
k )

∣∣∣ , (2.5)

for inputs of the output layer of NN

µA(x̂(3)
j )=

∑
k

V
µA(x(2)

k )∧µC(w(3)
jk ), j = 0, 1, 2, . . . ,m, k = 0, 1, 2 . . . , n, (2.6)
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and

µA(x(3)
j ) =

∣∣∣ϕ−1(x(3)
j ) ∧ µA(x̂(3)

j ) − µD(Q(3)
j )

∣∣∣ . (2.7)

In (2.1), (2.3), (2.5), and (2.7) supremum is taken over the set of pointsϕ−1(x(·)
(·)) in

X̂∈Rn, i.e.,ϕ : X̂→ X̂. Theϕ−1(x(·)
(·)) is an inversed sigmoid unipolar function

x̂
(·)
(·) =

1
ln e

ln
x

(·)
(·)

1 − x
(·)
(·)

, (3)

wheree is the base of a natural algorithm.
Let us set a desirable vectorX(0) in the output of NN which is nonfuzzy, i.e.,

µ(x(0)
j ) = 1 for all the components of the output vectorX(0). Sometimes the desired

vector can be used as a fuzzy one,µ(x(0)
j )�= 1 from M [0.1].

Then the minimum of the square Euclidean as a criterion of optimizing can be taken
as follows

e2 =
m∑

j=1

[
µ(x(0)

j )−µ(x(3)
j )

]2

. (4)

If according to Fig. 1 we take in to account, the presence of a defuzzifier, the output
of NN can be represented by the defuzziness procedure, where basing upon the vector
representation we get

Y(X(3)) =

∑
j

V Y(X(3))∧µj(X(3)),

∑
j

V µj(X(3))
, j = 0, 1, 2, . . . ,m. (5)

After the defuzzification, we can use the usual global error criterion:
(i) with a defuzzifier

e =
1
2

m∑
j=1

(y(0)
j −yj)

2
, (6.1)

(ii) without a defuzzifier

E =
1
2

m∑
j=1

(x(0)
j −x(3)

j )
2
. (6.2)

Let us consider the main backpropagation algorithm of MLNN based on a nonfuzzy
paradigm and the known dynamic learning rule of weight changes for any layer at discrete
time

w(t + 1) = w(t) + ∆w(t), (7.1)
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and

∆w(t) = −γ
∂E

∂w
, (7.2)

whereγ is the learning rate andw(t) is the synaptic strength over an instant in timet.
Then the changes of the synaptic strengths in all the layers of MLNN will be the following

∆w(3)
j,k =−γ

∂E

∂w
(3)
j,k

=−γ
∂E

∂x
(3)
j

∂x
(3)
j

∂x̂
(3)
k

∂x̂
(3)
k

∂w
(3)
j,k

=γ
(
x

(0)
j −x

(3)
j

)
x

(3)
j

(
1−x

(3)
j

)
x

(2)
k , (8)

wherek = 0, 1, 2, . . . , n, w(3)
j,k is the weight of bias at whicĥx(3)

j = 1.

Besides,x(3)
j = ϕ(x̂(3)

j ), x̂(3)
j =

n∑
k=0

x
(2)
k w(3)

jk , and the local error denote the

e
(3)
j =

(
x

(0)
j − x

(3)
j

)
x

(3)
j

(
1 − x

(3)
j

)
. (9)

Analogously, using (9) we obtain

∆w(2)
k,l = γ

∂E

∂w
(2)
k,l

= γ x
(2)
k

(
1 − x

(2)
k

)
x

(1)
l

m∑
j=1

e
(2)
j w(2)

j,k = x(1)
m e(2)

m , (10)

for the second layer, where

e(2)
m = x

(2)
k

(
1 − x

(2)
k

) m∑
j=1

e
(3)
j w(3)

jk ,

and

∆w(1)
l,s = γ

∂E

∂w
(1)
l,s

= γ x
(1)
l

(
1 − x

(1)
l

)
x(0)

s

n∑
k=1

e
(2)
k w(2)

k,l = x(1)
s e(1)

s , (11)

where

e(1)
s = x

(1)
l

(
1 − x

(1)
l

) n∑
k=1

e
(2)
k w(2)

k,l .

Now we return to the fuzziness of presentation of an error-based learning algorithm.
Note that temporal evolution of setC of weights by (7.1) does not take place, that is, the
set of weight memberships is independent of time. Then a membership equation of (7.1)
becomes as follows

µD(w(t + 1) = µD(w(t))∧µD(∆w(t)), (12)
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Next consider only equations (8)–(11), e.g., (10). Then the changes of weights in the
fuzzy representation will be

µD(∆w(2)
k,l ) = γ

[
µA(x(1)

m )∧µF(e(2)
m )

]
, (13)

whereγ < 1 now stands for a weighting coefficient andµF (e(2)
m ) is the membership of a

fuzzy local error of the setF⊂R. It will be as follows

µF (e(2)
m ) = µA(x(2)

k )∧[1 − µA(x(2)
k )]∧

∑
j

V
µF (e(3)

j )∧µC(w(3)
j,k ) (14)

and, according to (9),

µF (e(3)
j ) = [µA(x(0)

j ) − µA(x(3)
j )]∧µA(x(3)

j )∧
(
1 − µA(x(3)

j )
)
. (15)

In this manner it is easy to transform all equations (8)–(11) to a fuzzy space and
to perform the required calculations according to the fuzzy NN algorithmic structure
represented in Fig. 2. Thus, the postulates of the fuzzy paradigm in NN was presented by
the whole devolopment of the fuzzy backpropagation algorithm to the multi-layered NN
which was used in the joint with chaos framework in NN in Section 3.

3. Chaos Joint with Fuzzy Neural Networks

3.1. Presumptions of Chaos in NN.

A neural network chaotic phenomenon is strong by connected with a better understand-
ing of signal and pattern recognition under noise or fuzzy conditions as well as the infor-
mation transform and transmission. The amount of information transmission in chaotic
dynamic systems was calculated by Matsumoto and Tsuda (1987; 1988). It has been
proved that a chaotic neural network has an ability of an effective transmission of any
information received from outside. Fukai and Shiino (1992) discovered a chaos route via
Hopf bifurcations in the neural network model with time delay. The asymmetric neural
networks in terms of a mean field theory found chaos through an appearance of homo-
clinic orbits (Tsuda, 1992). The nonlinear dynamics and chaos theory problems in NN
are discussed in (Chapeau–Blondeau and Chauvet, 1992; Garliauskas and Shaw, 1977;
Garliauskas, 1999, and others). Most of the techniques that have been developed so far
can be only applied in relatively simple systems. All investigators try to use dynamics
theory more or less in nonlinear and far from equilibrium states of physical systems as a
certain mechanism for explaining brain information processing of higher animals.

In dynamic systems, chaos is characterized by many factors. One of them is conditions
of the appearence of a strange attractor. The second one is based on a pseudo-orbit tracing
property which under appropriate conditions can become an approximation of some true
orbit with a sufficient accuracy. The strange attractor which is of non-uniform character
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stems from dynamic intermittent systems. The crucial property of intermittent chaotic
behavior is interchange between two frequency modes: high and low ones. Below we
present the model which has a slow equation (low frequency) and a fast equation (high
frequency). We also add a condition of fuzziness to them referring to input data and
synaptic strengths.

3.2. Chaotic Model of NN with Fuzziness

We have performed the simulation based on a chaotic NN paradigm with a fuzziness. The
model includes two frequency modes (van der Maaset al., 1990) with an essential mod-
ification introducing biologically plausable so calledN -shaped synaptic couplings and
a certainty condition that defines the fuzziness. The model is organized in the following
way. The Cohen–Grossberg equations (Cohen and Grossberg, 1983), after simplifying
and introducing a nonlinearN -shaped postsynaptic potential function, become fast (high
frequency) equations discretized in time. It is written for the second (hidden) layer as
follows

x̂
(2)
i (t + 1) = (1 − αx)x̂(2)

i (t) + βρi(x
(1)
i ), (16.1)

where

ρi(x̂
(1)
i ) =

n∑
j=0

w(1)
ij ρj(xj), (16.2)

αx is the decay parameter of potentials,β is the excitatory rate,ρj(xj) is theN -shaped
synaptic function further simplified asρ(x) because of its independence of time and neu-
ron type.

Fuzzy equivalent equations are presented

µA(x̂(2)
i (t + 1)) = ωxµA(x̂(2)

i (t))V βµA(ρ(x(1)
i ), (17.1)

where

µA(ρ(x(1)
i ) =

∑
j

V
µC(w(1)

ij )∧[Supρ−1
j (x̂(2)

j )µA(x(1)
j )], (17.2)

andωx = 1 − α � 1 andβ � 1 are weight coefficients.
The synaptic functionρ(x) reflects the mutual activity between presynaptic and post-

synaptic potentials as a result of complex synapse-dendrite activation. This activation, in
most cases, is defined by a restrictedN -shaped current-voltage dendritic membrane re-
lation (Garliauskas and Shaw, 1977; Garliauskas, 1998) that possesses two stable points
and one unstable point.

Delta equations considered as slow (low frequency) ones were presented in such a
way:

w(1)
ij (k + 1) = ωww(1)

ij (k) + ηx̂
(2)
i (k)x(1)

j (k), (18.1)



190 A. Garliauskas

wherek is a recursion step. The fuzzy equivalent is

µC(w(1)
ij (k + 1)) = ωwµC(w(1)

ij (k))V η[µA(x̂i(k)∧µA(xj(k)]. (18.2)

The solution of equations (17.1, 17.2) by an iterative process upto the steady state
inside of the solution of slow equations (18.1, 18.2) amounting to 200 cycles makes a
decision with a fuzziness and chaos presented in Section 4.

4. Experimental Simulation

The modeling experiment has been done on simple cases of an MLNN architecture: 3–
2–1, i.e., three input, two hidden and one output elements of the neuronal scheme with
nonlinear functions of synaptic connections and neuronal activities as well as fuzzy con-
ditions. The model and its developing realization, based on two-modes discrete nonlinear
equations (16.2), (17.2), (18.2), were carried out under the initial conditions

Îi = {(1|0.7), (−1|0.1), (1|0.9)},

i = 1, 2, 3 for three input neurons as well as synaptic weights as follows:
(i) between the input layer and a hidden one

w(1)
ij = {(w(1)

11 |0.9), (w(1)
12 |1.0), (w(1)

13 |0.1), (w(1)
21 |0.5),

(w(1)
22 |0.7), (w(1)

23 |0.1)};

(ii) between the output layer and a hidden one

w(2)
ij = {(w(2)

11 |0.7), (w(2)
12 |0.3), (w(2)

13 |0.9)}.

The results of modeling in more extended situations are demonstrated in the diagrams
of Figs. 4 and 5.

Two nonlinear functions are given: one as a unipolar sigmoidal (chaos diagram, Fig. 4)
or a bipolar one (chaos diagram, Fig. 5) and the second as a weight multiplied by the
N -shaped function. The modeling was caried out with the same parameters as above.
It should be noted: first, the intermittent stable, period-doubling, unstable, and chaotic
processes change place from the range with lower values of the bifurcation parameter
(η = 17.0) to the range with higher ones (η = 34.0) (Fig. 4); second, the processes
become richer and more complex. The diagram (Fig. 5) shows that the processes do not
possess explicitly distinct period-doubling behaviour but they possess very many win-
dows with stable point areas atη = 13.0÷17.5, 19.2, 24.5÷27.5. Only at higher values
of η = 29.5 the chaotic regime is continued uninterrupted. The evolution of dynamic
processes, given the bipolar sigmoidal activation function as a hyperbolic tangent and
theN -shaped form in neuronal couplings, become less distinct and more chaotic in the
general sense.
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Fig. 4. Bifurcation and the chaos diagram for NN with a unipolar sigmoidal of the activation function and
n-shaped synaptic couplings. There are∆x = 0.0001 and∆η = 0.03.

Fig. 5. Bifurcation and the chaos diagram for NN with two nonlinear functions: bipolar sigmoidal of a neuron
andN -shaped for synaptic coupling. There are∆x = 0.0001 and∆η = 0.03.

It should be noted that the fuzziness expressed by input data and weight memberships
in the rates given did not influence to the appearence of chaotic phenomena in such sim-
plified neural networks. We intend to continue the simulation experiment of ANN with
fuzziness.
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5. Conclusions

1. The origin of the fuzzy signals lies in complex biochemical and electrical processes
of the synapse and dendrite membrane excitation and the inhibition mechanism.

2. The mathematical operations incorporated in fuzzy neural network modeling are:
the scalar product between inputs of layers and synaptic weights is replaced by a
fuzzy logic multiplication, the sum of products changes to the fuzzy logic sums, the
operators such as supremum, maximum, and minimum are presented for a fuzzy
description.

3. The algorithm of varying membership functions built basing on the backpropaga-
tion paradigm and the method of fuzzy neural optimization have been considered.
Both the fuzzy properties and the chaos phenomenon are analyzed on the basis of
experimental computations.

4. We hope that this modest study on fuzziness and chaos phenomena will further
stimulate the development of more powerful tools for modeling uncertainties asso-
ciated with human perception, cognition, and thinking.
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Dirbtiniai neuromodeliai su neryškumo ir chaoso savyḃemis

Algis GARLIAUSKAS

Nagriṅejamas apibendrintas neurotinkl↪u modelis atsižvelgiant↪i parametr↪u neryškum↪a (neapi-
brėžtum↪a) ir chaos↪a. Neryškumas susietas su sinapsi↪u biocheminiais procesais ir dendrit↪u mem-
bran↪u mechanizm↪u atsitiktiniais reiškiniais bei galimais↪iėjim ↪u signal↪u neapibṙežtumais. Pateikti
neryškios logikos algoritmai dirbtinio neurotinklo plotmėje bei chaoso interpretacijoje, duoti skai-
tinio chaoso pasireiškimo eksperimento rezultatai.


