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Abstract. A quick gradient training algorithm for a specific neural network structure called an
extra reduced size lattice-ladder multilayer perceptron is introduced. Presented derivation of the
algorithm utilizes recently found by author simplest way of exact computation of gradients for ro-
tation parameters of lattice-ladder filter. Developed neural network training algorithm is optimal in
terms of minimal number of constants, multiplication and addition operations, while the regularity
of the structure is also preserved.
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1. Introduction

During the last decade a lot of new structures for artificial neural networks (ANN) were
introduced fulfilling the need to have models for nonlinear processing of time-varying
signals (Haykin, 1999; Tsoi and Back, 1997; Juditskyet al., 1995; Sjöberget al., 1995).
One of many and perhaps the most straightforward way to insert temporal behaviour into
ANNs is to use digital filters in a place of synapses of multilayer perceptron (MLP). Fol-
lowing that way, a time-delay neural network (Waibelet al., 1989), FIR/IIR MLPs (Back
and Tsoi, 1991; Wan, 1993), gamma MLP (Lawrenceet al., 1997), a cascade neural net-
work (Back and Tsoi, 1996) to name a few ANN architectures, were developed.

A lattice-ladder realization of IIR filters incorporated as MLP synapses forms a
structure of lattice-ladder multilayer perceptron (LLMLP) firstly introduced by (Back
and Tsoi, 1992) and followed by several simplified versions proposed by the au-
thor (Navakauskas, 1998; Navakauskas, 2001). A LLMLP is an appealing structure for
advanced signal processing, however, even moderate implementation of its training hin-
ders the fact that a lot of storage and computation power must be allocated (Navakauskas,
1999).

* For the financial support author would like to thank prof. L. Ljung (Linköping University, Sweden), The
Royal Swedish Academy of Sciences and The Swedish Institute – New Visby project Ref. No. 2473/2002
(381/T81).
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Well known neural network training algorithms such as backpropagation and its mod-
ifications, conjugate-gradients, Quasi–Newton, Levenberg–Marquardt, etc. or their adap-
tive counterparts like temporal-backpropagation (Wan, 1990), IIR MLP training algo-
rithm (Back and Tsoi, 1993), recursive Levenberg–Marquardt (Ngia and Sjöberg, 2000),
etc., essentially are based on the use of gradients (also called sensitivity functions) –
partial derivatives of the cost function with respect to current weights. Here we are go-
ing to show how the exploration of specific to lattice-ladder filter (LLF) computation of
gradients leads to efficient realization of overall family of LLMLP training algorithms.
While doing so, we present quickest in terms of number of constants, multiplication and
addition operations training algorithm for an extra reduced size LLMLP (XLLMLP).

2. Towards Simplified Computations

In order not to obscure main ideas, we will first work only with one LLF and afterwards
in Section 4 generalize and utilize results in a development of training algorithm for a
specific – XLLMLP structure. Although, the final LLF training algorithm is fairly simple,
many intermediate steps involved in the derivation could be confusing. Thus, here we will
present previous results on calculation of LLF gradients, introduce the simplifications we
have chosen, and only in next Section 3 actually derive all simplified expressions.

Consider one lattice-ladder filter (see Fig. 1) used in XLLMLP structure, when its
computations are expressed by

[
fj−1(n)
bj(n)

]
=

[
cosΘj − sinΘj

sin Θj cosΘj

] [
fj(n)

zbj−1(n)

]
, j = 1, 2, . . . ,M, (1a)

sout(n) =
M∑

j=0

vjbj(n), (1b)

with boundary conditions

b0(n) = f0(n), fM (n) = sin(n). (1c)

Here we used the following notations:sin(n) andsout(n) are signals at input and output
of M th order LLF,fj(n) and bj(n) are forward and backward signals floating injth
section of LLF,Θj andvj are lattice and ladder coefficients correspondingly, whilen is
time index andz is a delay operator such thatzbj(n) ≡ bj(n− 1).

It could be shown (see, for example, (Haykin, 1996)) that gradient expressions for the
calculation of LLF coefficients requireM recursions, yielding a training algorithm with
total complexity proportional toM2. One possible way to simplify the LLF gradients
calculation was presented in (Rodriguez–Fonollosa and Masgrau, 1991).

We assume that the concept offlowgraph transposition is already known (if not –
consult, for example, (Regalia, 1995; pages 291–293)). Applying the flowgraph transpo-
sition rules to the LLF equations (1a) and (1b), we obtain the LLF transpose realization.
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Fig. 1. A lattice-ladder filter of orderM . Input signalsin(n) is processed according to (1) using latticeΘj and
laddervj coefficients and as a result output signalsout(n) is obtained. Elements of the scheme:z in a square –
a time delay, filled triangle – multiplication by a coefficient, plus sign in a circle – addition.

The resulting system gives rise to the following recurrent relation[
gj(n)
tj−1(n)

]
=

[
1
z

] [
cosΘj sinΘj

− sinΘj cosΘj

] [
gj−1(n)
tj(n)

]
+

[
0

vj−1

]
,

j = M, . . . , 2, 1, (2a)

with boundary conditions

tM (n) = vM , g0(n) = t0(n), gM (n) = sout(n). (2b)

Here bygj(n) andtj(n) we indicated forward and backward signals floating injth sec-
tion of transposed LLF.

After simple re-arrangements (see, for example, (Navakauskas, 1999; pages 51–54))
it could be shown that filtered regressor components alternatively could be expressed as

∇Θj(n) =
fj(n)tj(n) − bj(n)gj(n)

cosΘj
e(n). (3)

Heree(n) is a LLF error.
The main idea given by J. R.–Fonollosa and E. Masgrau towards simplifying the gra-

dient computations for lattice parameters is to find a recurrence relation that realizes the
mapping[

fj−1(n)tj−1(n)
bj−1(n)gj−1(n)

]
−→

[
fj(n)tj(n)
bj(n)gj(n)

]
, (4)

in such a way that all the necessary transfer functions may be obtained from one single
filter resulting in an algorithm with total complexity proportional toM .
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3. Derivation of Simplified Calculation of LLF Gradients

There are in total14 possible and implementable ways of realization of mapping (4). The
optimal way in a sense of minimal number of constants, addition and delay operations
involved in the calculations of the gradients for LLF, and also regularity of the regressor
lattice structure, was reported in (Navakauskas, 2002). It forms the basis for new training
algorithm to be developed in next section. Thus, let us show in the step-by-step fashion
the re-arrangements involved in the derivation of optimal realization of mapping (4).

Accordingly, we are seeking a simple realization for the following optimal augmented
mapping


fj−1(n)gj−1(n)
bj−1(n)gj−1(n)
fj(n)tj(n)
bj(n)tj(n)

 −→


fj(n)gj(n)
bj(n)gj(n)

fj−1(n)tj−1(n)
bj−1(n)tj−1(n)

 , (5)

while the overall system describing single section of regressor lattice is expressed by

[
fj−1(n)gj−1(n)
bj(n)gj−1(n)

]
=

[
cosΘj − sinΘj

sin Θj cosΘj

][
fj(n)gj−1(n)

zbj−1(n)gj−1(n)

]
, (6a)

[
fj−1(n)tj−1(n)
bj(n)tj−1(n)

]
=

[
cosΘj − sinΘj

sin Θj cosΘj

][
fj(n)tj−1(n)

zbj−1(n)tj−1(n)

]
, (6b)

[
fj(n)gj(n)
fj(n)tj−1(n)

]
=

[
1
z

][
cosΘj sin Θj

− sinΘj cosΘj

][
fj(n)gj−1(n)
fj(n)tj(n)

]
+

[
0

vj−1

]
fj(n), (6c)[

bj(n)gj(n)
bj(n)tj−1(n)

]
=

[
1
z

][
cosΘj sin Θj

− sinΘj cosΘj

][
bj(n)gj−1(n)
bj(n)tj(n)

]
+

[
0

vj−1

]
bj(n). (6d)

In order to achieve mapping (5) two information flow directions in (6a) must
be reversed: nowfj(n)gj−1(n) must be computed based onfj−1(n)gj−1(n), and
bj−1(n)tj−1(n) must be computed based onbj(n)tj−1(n).

For the first re-direction to be fulfilled we take (6a) and re-arrange it as follows

[
fj(n)gj−1(n)
bj(n)gj−1(n)

]
=

[
1 0
0 z−1

]
1

cosΘj
− sin Θj

cosΘj

− sin Θj

cosΘj

1
cosΘj

[ fj−1(n)gj−1(n)
bj−1(n)gj−1(n)

]
. (7a)
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Similarly, taking (6b) and re-arranging we get

[
fj−1(n)tj−1(n)
bj−1(n)tj−1(n)

]
=

[
1 0
0 z−1

]
1

cosΘj
− sinΘj

cosΘj

− sin Θj

cosΘj

1
cosΘj

[ fj(n)tj−1(n)
bj(n)tj−1(n)

]
. (7b)

For the convenience we rewrite unchanged expressions (6c) and (6d) here[
fj(n)gj(n)
fj(n)tj−1(n)

]
=

[
1
z

][
cosΘj sin Θj

− sinΘj cosΘj

][
fj(n)gj−1(n)
fj(n)tj(n)

]
+

[
0

vj−1

]
fj(n), (7c)[

bj(n)gj(n)
bj(n)tj−1(n)

]
=

[
1
z

][
cosΘj sin Θj

− sinΘj cosΘj

][
bj(n)gj−1(n)
bj(n)tj(n)

]
+

[
0

vj−1

]
bj(n). (7d)

Now, (7) describes a system that has no conflicting information flow directions. How-
ever, there are two advance operations to be performed in (7a) and in (7b), making the
system non-causal, hence un-implementable. There is, however, more to this computation
than first meets the eye.

Notice first, the mapping (5) needs only four expressions to be specified. Thus a sim-
plification of (7) becomes plausible. It could be shown that (7) could be simplified dras-
tically and finally expressed by

fj(n)gj(n)
bj(n)gj(n)

fj−1(n)tj−1(n)
bj−1(n)tj−1(n)

 =


1 0 0 0
0 1 0 0
0 0 z 0
0 0 0 1



×

I4 +


sin Θj 0 0 0
0 sinΘj 0 0
0 0 − sinΘj 0
0 0 0 − sinΘj




0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0




×


1 0 0 0
0 z 0 0
0 0 1 0
0 0 0 1



fj−1(n)gj−1(n)
bj−1(n)gj−1(n)
fj(n)tj(n)
bj(n)tj(n)

 + vj−1


0
0

fj−1(n)
bj−1(n)

 . (8a)

The simplified system of single section of regressor lattice is already causal. Moreover,
its implementation requires only2 delay operators,3 constants (sin Θj, − sin Θj and
vj−1) and8 addition operations (more evident from pictorial representation of (8) that
we skiped to save space). In order to finish the derivation, the boundary conditions when
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M such systems are cascaded must be considered. Based on (1c) and (2b) we get such
new boundary conditions

f0(n)g0(n) = f0(n)t0(n), b0(n)g0(n) = b0(n)t0(n),

fM (n)tM (n) = vM , bM (n)tM (n) = vM bM (n).
(8b)

4. Simplified Training Algorithm for Extra Reduced Size LLMLP

One way of LLMLP structure reduction could be achieved by restricting each neuron to
have only one “output” lattice-ladder filter while connecting layers through conventional
synaptic coefficients. It yields an extra reduced size lattice-ladder multilayer perceptron
structure (XLLMLP) thats pictorial representation is given on next page in Fig. 2 and
definition follows.

DEFINITION 1 (Navakauskas, 2001). A XLLMLP of sizeL layers,{N0, N1, . . . , NL}
nodes and filter orders{M1,M2, . . . ,ML} is defined by

sl
h(n) = Φl

{
N l−1∑
i=1

wl
ih

Ml∑
j=0

vl
ij · blij(n)︸ ︷︷ ︸

= s̃l
i(n)︸ ︷︷ ︸

= ŝl
h(n)

}
, h = 1, . . . , N l, l = 1, . . . , L, (9a)

when local flow of information in the lattice part of filters is defined by[
f l

i,j−1(n)

blij(n)

]
=

[
cosΘl

ij − sin Θl
ij

sinΘl
ij cosΘl

ij

][
f l

ij(n)

zbli,j−1(n)

]
, j = 1, 2, . . . ,M l, (9b)

with initial and boundary conditions

bli0(n) = f l
i0(n), f l

i,Ml+1(n) = sl−1
i (n). (9c)

Heresl
h(n) is an output signal of the “output” neuron;s̃l

i(n) is an output signal of the fil-
ter that is connected toi “input” neuron;wl

ih represents single (static) weight connecting
two neurons in a layer;Θl

ij andvl
ij are weights of filter’s lattice and ladder parts corre-

spondingly;blij(n) andf l
ij(n) are forward and backward prediction errors of the filter;i,

j, h andl index inputs, filter coefficients, outputs and layers respectively.

Let us consider calculation of sensitivity functions using backpropagation algorithm
for XLLMLP lth hidden layer neurons. It could be shown (Navakauskas, 2001) that sen-
sitivity functions for XLLMLP could be expressed by

∇wl
ih(n) = s̃l

i(n) δl
h(n), (10a)
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Fig. 2. A layer of XLLMLP. Input signalssl−1
x (n) from a previous layer are processed according to (9) firstly by

a group of lattice-ladder filters LLFx (see Fig. 1 for more detailed treatment), then by static synapseswl
x,x, finally

by neuron activation functionsΦl(·) forming current layer output signalssl
x(n). Emphasized intermediate

signals: LLF output signals̃sl
x(n) and signals before activation functionsŝl

x(n). For the purpose of clearness
size of main matrices (shown in brackets) are revealed at the bottom.

∇vl
ij(n) = blij(n)

N l∑
h=1

δl
h(n), (10b)

∇Θl
ij(n) =

Ml∑
r=0

vl
ir(n)

∂

∂Θl
ij

blir(n)
N l∑

h=1

wl
ihδ

l
h(n). (10c)

Note, that these expressions are similar to standard LLF gradient expressions in a way
that here we used additional indexes to state LLF position in the whole XLLMLP ar-
chitecture (being precise, we showed expressions for sensitivity functions forjth coeffi-
cients of LLF connectingith input neuron withhth output neuron inlth layer of LLMLP)
and replaced output errore(n) term by the generalized local instantaneous error, i.e.,
δl
h(n) = ∂E(n)/∂ŝl

h(n), that could be explicitly expressed by

δl
h(n) =


−el

h(n)Φ′L{
ŝl

h(n)
}
, l = L,

Φ′l{ŝl
h(n)

} Ml+1∑
j=0

vl+1
hj γl+1

hj (n)
N l+1∑
p=1

wl+1
hp δl+1

p (n), l 	= L,
(10d)
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with γl+1
hj (n) and its companionϕl+1

hj (n) by[
ϕl+1

h,j−1(n)
γl+1

hj (n)

]
=

[
cosΘl+1

hj − sin Θl+1
hj

sinΘl+1
hj cosΘl+1

hj

][
ϕl+1

hj (n)
zγl+1

h,j−1(n)

]
. (10e)

Aiming to present simplified training of XLLMLP we replace (10c) with

∇Θl
ij(n) =

f l
ij(n)tlij(n) − blij(n)gl

ij(n)
cosΘl

ij︸ ︷︷ ︸
= ∇̂Θl

ij(n)

N l∑
h=1

wl
ihδ

l
h(n), (11)

where order recursion computation is done in a way of (8) by
f l

ij(n)gl
ij(n)

blij(n)gl
ij(n)

f l
i,j−1(n)tli,j−1(n)
bli,j−1(n)tli,j−1(n)

 =


1 z sin Θl

ij sin Θl
ij 0

sin Θl
ij z 0 sin Θl

ij

−z sinΘl
ij 0 z −z sin Θl

ij

0 −z sin Θl
ij− sinΘl

ij 1



×


f l

i,j−1(n)gl
i,j−1(n)

bli,j−1(n)gl
i,j−1(n)

f l
ij(n)tlij(n)
blij(n)tlij(n)

 + vl
i,j−1


0
0

f l
i,j−1(n)
bli,j−1(n)

 , (12a)

with boundary conditions:

f l
i0(n)gl

i0(n) = f l
i0(n)tli0(n), bli0(n)gl

i0(n) = bli0(n)tli0(n), (12b)

f l
iMl(n)tliMl (n) = vl

iMl , bliMl(n)tliMl (n) = bliMl(n)vl
iMl . (12c)

Full XLLMLP training algorithm is presented at the end of the article. Let us here
only summarize main steps of it:

1. XLLMLP recall. Given input patterns0i (n) is presented to the input layer (see line 1
of the algorithm). Afterwards it is processed through XLLMLP in a layer by layer
fashion (lines 2–14): first by corresponding lattice-ladder filters (lines 3–9), then
by static synapses (lines 10–13). In that way XLLMLP output patternsL

h (n) is
obtained.

2. Node errors. Using rezults of previous calculations, errors of output layer neurons
are determined (line 15). Then, again in a layer by layer fashion – however this time
in the backward direction – these errors are processed through XLLMLP (lines 16–
23). Following that way errors of hidden layer neuronsδl

h(n) are calculated.

3. Gradient terms. Simplified calculation of gradient terms for the lattice weight up-
dates is done as in (12). Let us here be more specific. Working in a layer by layer



Quick Training Algorithm for Extra Reduced Size LLMLP 231

fashion and taking filter one by one (lines 24–38; note however that processing or-
der here is insignificant), algorithm proceeds as follow: at line 25 initial conditions
are assigned as in (12c); in lines 26–29 two lower equations from (12a) are evalu-
ated for all sections of the filter; at line 30 left boundary conditions are fulfilled as
in (12b); for all sections of the filter (lines 31–37) by lines 32–35 remaining upper
equations from (12a) and in line 36 alsô∇Θl

ij(n) from (11) are evaluated.

4. Weight updates. Dynamic synapses (LLFs) are updated at lines 41 and 42 realizing
expressions (10b) and (11), while static ones – at line 44 realizing (10a) and taking
into account their previous values, training parameterµ, node errors and gradient
terms.

5. Stability test. New parameter values of lattice filters are checked if they satisfy sta-
bility requirement (see lines 46–48), if some of them do not satisfy – old parameter
values are substituted at line 47.

5. Conclusions

In this paper we dealt with the problem of computational efficiency of lattice-ladder mul-
tilayer perceptrons training algorithms that are based on the computation of gradients,
for example, backpropagation, conjugate-gradient or Levenberg–Marquardt. Here we ex-
plored calculations that are most computationally demanding and specific to lattice-ladder
filter – computation of gradients for lattice (rotation) parameters.

The optimal way in a sense of minimal number of constants, addition and delay op-
erations involved in aforementioned computations for single lattice-ladder filter, and also
regularity of the regressor structure, was found recently by the author. Based on it quick
training algorithm for the extra reduced size lattice-ladder multilayer perceptron was here
derived.

Not surprisingly, presented algorithm requires approximatelyM times (whereM is
the order of filter) less computations while it follows exact gradient path (because of the
fact that derivations do not involved any approximations) when coefficients of filters are
assumed to be stationary. More importantly, incorporated in the algorithm implementa-
tion of a single section of regressor lattice will require only2 delay elements,3 constants
and8 addition operations.

Experimental study of the proposed algorithm was not considered because of the fact
that computations of gradients are exact and possible comparison inherently will be bi-
ased depending on the chosen way of implementation.
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XLLMLP Training Algorithm

1. XLLMLP Recall

1 Let f1
i,M1(n) = s0i (n).

2 for l = 1, 2, . . . , L do

3 for i = 1, 2, . . . , N l−1 do

4 for j = M l, . . . , 2, 1 do

5

[
f l

i,j−1(n)
blij(n)

]
=

[
cosΘl

ij(n) − sinΘl
ij(n)

sin Θl
ij(n) cosΘl

ij(n)

][
f l

ij(n)
bli,j−1(n− 1)

]
.

6 end for j

7 bli0(n) = f l
i0(n),

8 s̃l
i(n) =

Ml+1∑
j=0

vl
ij(n)blij(n).

9 end for i

10 for h = 1, 2, . . . , N l do

11 ŝl
h(n) =

N l+1∑
i=1

wl
ihs̃

l
i(n),

12 sl
h(n) = Φl

{
ŝl

h(n)
}
.

13 end for h

14 end for l

2. Node Errors

15 eL
h (n) = dh(n) − sL

h (n), h = 1, 2, . . . , NL.

16 for l = L− 1, L− 2, . . . , 1 and h = 1, 2, . . . , N l do

17 Let γl
h,Ml(n) = 0.

18 for j = M l, . . . , 2, 1 do

19

[
ϕl

h,j−1(n)
γl

hj(n)

]
=

[
cosΘl

hj(n) − sinΘl
hj(n)

sin Θl
hj(n) cosΘl

hj(n)

][
ϕl

hj(n)
γl

h,j−1(n− 1)

]
.

20 end for j

21 ϕl
h0(n) = γl

h0(n).

22 δl
h(n) =


−el

h(n)Φ′L{
ŝl

h(n)
}
, l = L,

Φ′l{ŝl
h(n)

} Ml+1∑
j=0

vl+1
hj γl+1

hj (n)
N l+1∑
p=1

wl+1
hp δl+1

p (n), l 	= L.

23 end for h, l
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3. Gradient Terms

24 for l = 1, 2, . . . , L and i = 1, 2, . . . , N l−1 do

25 Let btli,Ml = vl
i,Ml(n)blij(n), ftli,Ml = sl−1

i (n)vl
i,Ml (n).

26 for j = M l, . . . , 2, 1 do

27 btli,j−1 = btlij −
[
ftlij(n) + bgl

i,j−1(n− 1)
]
sin Θl

ij(n)
+vl

i,j−1(n)bli,j−1(n),

28 ftli,j−1(n) = ftli,j(n− 1) + vl
i,j−1(n)f l

i,j−1(n).

29 end for j

30 Let temp = btli0, fgl
i0 = ftli0(n− 1).

31 for j = 1, 2, . . . ,M l do

32 ftli,j−1(n) = ftlij(n− 1) −
[
fgl

i,j−1 + btlij
]
sin Θl

ij(n),

33 fgl
ij = fgl

i,j−1 +
[
bgl

i,j−1(n− 1) + ftlij(n)
]
sin Θl

ij(n),

34 bgl
i,j−1(n) = temp,

35 temp = bgl
i,j−1(n− 1) +

[
fgl

i,j−1 + btlij
]
sinΘl

ij(n),

36 ∇̂Θl
ij(n) =

[
ftlij(n) − temp

]
/ cosΘl

ij(n).

37 end for j

38 end for i, l

4. Weight Updates

39 for l = 1, 2, . . . , L and i = 1, 2, . . . , N l−1 do

40 for j = 1, 2, . . . ,M l do

41 vl
ij(n + 1) = vl

ij(n) + µblij(n)
N l∑

h=1

δl
h(n),

42 Θl
ij(n+ 1) = Θl

ij(n) + µ∇̂Θl
ij(n)

N l∑
h=1

wl
ihδ

l
h(n).

43 end for j

44 for h = 1, 2, . . . , N l dowl
ih(n+ 1) = wl

ih(n) + µδl
h(n)s̃l

i(n).

45 end for i, l

5. Stability Test

46 for l = 1, 2, . . . , L and i = 1, 2, . . . , N l−1 and j = 1, 2, . . . ,M l do

47 if |Θl
ij(n + 1)| > π/2 then Θl

ij(n + 1) = Θl
ij(n).

48 end for j, i, l
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Greitas ypatingai mažo dydžio pynǔci ↪u-kopetėli ↪u daugiasluoksni ↪u
perceptron ↪u mokymo algoritmas

Dalius NAVAKAUSKAS

Straisnyje pateiktas greičiausias pagal naudojam↪u koeficient↪u bei suḋeties ir daugybos opera-
cij ↪u skaǐci ↪u ypatingai mažo dydžio pynuči ↪u-kopeṫeli ↪u daugiasluoksni↪u perceptron↪u mokymo algo-
ritmas. Jis yra išvestas nagrinėjant esmin↪e vis ↪u gradientini↪u mokymo algoritm↪u dal↪i – specifinius
pynǔci ↪u-kopeṫeli ↪u daugiasluoksniams perceptronams gradient↪u pynuṫems skaǐciavimus.


