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Abstract. The results of experimental testing of balanced random interval arithmetic with typical
mathematical test functions and practical problem are presented and discussed. The possibility
of evaluation ranges of functions using balanced random interval arithmetic is investigated. The
influence of the predefined probabilities of standard and inner interval operations to the ranges of
functions is experimentally investigated.
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1. Introduction

Many problems in engineering, physics, economic may be reduced to global optimization
problems. Mathematically the problem is formulated as

f∗ = min
x∈D

f(x),

where f(x) is a nonlinear objective function of continuous variablesf : �n → �,
D ⊆ �n is a multidimensional feasible region,n is the number of variables. Besides
the global minimumf∗ one or all global minimizersx∗: f(x∗) = f∗ should be found.

Interval global optimization methods are based on interval arithmetic proposed by
Moore (1966). The lower and upper bounds for the function values in the subregion are
estimated applying interval operations with intervals instead of the real operations with
real variables in the algorithm calculating the function values. The bounds are useful to
detect the subregions of the feasible region not containing a global minimizer.

* The author wishes to acknowledge the financial support through the Royal Society/NATO Postdoctoral
Fellowship for the research “Stochastic Interval Methods for Process Optimisation”.
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The disadvantage of interval methods is the dependency problem (Hansen, 1992):
when a given variable occurs more than once in an interval computation, it is treated
as a different variable in each occurrence. This causes widening of computed intervals
making it more difficult to obtain tight intervals. One should always be aware of this
shortcoming and take appropriate steps to reduce its effect. However it is not always
possible to overcome the problem, when the objective function is defined by means of a
computer code.

In random interval arithmetic proposed by Alt and Lamotte (2001) the standard or
newly defined inner interval operations are chosen randomly with the same probability at
each step of the computation producing comparatively tight bounds (although it cannot
guarantee that all values of the objective function in the subregion are within bounds).
Random interval arithmetic has been applied to compute ranges of some functions over
small intervals. Alt and Lamotte (2001) have shown that random interval arithmetic pro-
vides ranges of functions over small intervals which are much closer to the exact range
than the standard interval arithmetic. However random interval arithmetic provides too
narrow bounds when intervals are wide, therefore it can not be applied to global opti-
mization directly.

Balanced random interval arithmetic proposed by Zilinskas and Bogle (2003) is ob-
tained extending the ideas of random interval arithmetic by choosing standard and inner
interval operations at each step of the computation randomly with predefined probabil-
ity. The influence of the probabilities of the standard and inner interval operations to the
ranges of functions is experimentally investigated on a practical problem. The value used
for the probability depends on the balance required between efficiency and robustness.
The preliminary test results seem promising for the construction of global optimization
algorithms based on these ideas of probabilistic generalized interval methods. In this pa-
per the experimental testing results on more functions are presented.

2. Interval Global Optimization Methods

Interval global optimization methods are based on interval arithmetic proposed by Moore
(1966). Interval arithmetic operates with real intervalsX = [x1, x2] = {x ∈ � |x1 �
x � x2}, wherex1 andx2 are real numbers. For any real arithmetic operation {x op y}
the corresponding interval arithmetic operation {X op Y } is defined, whose result is an
interval containing every possible number produced by {x opy}, x ∈ X, y ∈ Y . Denot-
ing [a ∨ b] = [min (a, b) , max (a, b)] , xc = min (|x1| , |x2|) andxd = max (|x1| , |x2|),
the standard interval arithmetic operations are defined as:

X + Y = [(x1 + y1) ∨ (x2 + y2)] ,

X − Y = [(x1 − y2) ∨ (x2 − y1)] ,

X × Y =




[(xcyc) ∨ (xdyd)] , 0 /∈ X, 0 /∈ Y ,

[(x1yd) ∨ (x2yd)] , 0 ∈ X, 0 /∈ Y ,

[min {x1y2, x2y1} , max {x1y1, x2y2}] , 0 ∈ X, 0 ∈ Y ,
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X/Y =

{
[(xc/yd) ∨ (xd/yc)] , 0 /∈ X, 0 /∈ Y ,

[(x1/yc) ∨ (x2/yc)] , 0 ∈ X, 0 /∈ Y .

The guaranteed lower and upper bounds for the function values can be estimated ap-
plying standard interval operations with the intervals instead of the real operations in the
algorithm to calculate the function values. The bounds are useful to detect the subregions

of the feasible region not containing a global minimizer. Such subregions may be dis-
carded from the further search. If the objective function is differentiable it is possible to

compute the intervals of the derivatives and discard the subregions where the objective
function is monotone. If the objective function is twice continuously differentiable it is
possible to compute the intervals of the second derivatives and discard the subregions

where the objective function is concave. If the objective function is twice differentiable
the special interval Newton method can be applied to reduce the subregions, and discard

the subregions where there are no stationary points (Hansen, 1992).
The first version of the interval global optimization algorithm was oriented to min-

imization of a rational function by bisection of sub-domains (Skelboe, 1974). Interval

methods for global optimization were further developed in (Moore, 1977; Hansen, 1978a,
1978b), e.g., the interval Newton method and the test of strict monotonicity were intro-
duced. A thorough description including theoretical as well as practical aspects can be

found in (Hansen, 1992) where the very efficient interval global optimization method
involving monotonicity and nonconvexity tests and special interval Newton method is

proposed. The method assumes that the objective function is twice continuously differ-
entiable. The mathematical expressions of the functions should be available. If the mono-
tonicity and nonconvexity tests and interval Newton method are not used the method can

minimize even noncontinuous functions, but then it is not so efficient.
A branch and bound technique is usually used to construct interval global optimiza-

tion algorithms. An iteration of a classical branch and bound algorithm processes a node

in the search tree representing a not yet explored subspace of the solution space. Iter-
ation has three main components: selection of the node to process, bound calculation,

and branching. The rules of selection, branching and bounding differ from algorithm to
algorithm. All interval global optimization branch and bound algorithms use the hyper-
rectangular partitions and branching is usually performed bisecting the hyper-rectangle

into two. The bounding rule describes how the bounds of minimum are found. In interval
global optimization methods, bounds are estimated using interval arithmetic.

Let UB denote upper bound off∗ over feasible regionD: UB � min
x∈D

f(x),

lower and upper bounds of function values are evaluated using interval arithmetic:

[fL(X), fU (X)] = f(X), C is the candidate set. The branch and bound scheme aims to
reduceC and make it converge toX∗. The general interval branch and bound algorithm
is shown in Algorithm 1.



406 J. Žilinskas, I.D.L. Bogle

Algorithm 1. General interval branch and bound algorithm
Initialization:C ⇐ {D}, UB ⇐ fU (D).
While C contains not only solutions

SelectB ∈ C, C ⇐ C\{B}.
If fL(B) � UB

BranchB: B =
p
∪

j=1
Tj.

For j = 1 to p

If fL(Tj) � UB

UB ⇐ min(UB, fU (Tj)).
C ⇐ C ∪ {Tj}.

The interval methods have been combined with searches implemented in real number
arithmetic. Jansson and Knüppel (1995) have proposed the global unconstrained mini-
mization method involving a combination of local search, branch-and-bound technique
and interval arithmetic. In this method derivatives are not required. Numerical results
for well-known problems and comparisons with other methods are given in (Jansson and
Knüppel, 1995).

Gorges and Ratschek (1999) have applied interval techniques of global optimization
to the approximate local solution obtained from the local search in order to determine
guaranteed error bounds and to improve the solution if necessary.

Csallneret al. (2000) have investigated variants of interval branch-and-bound algo-
rithms for global optimization where the bisection was substituted by the subdivision of
subregions into many subregions in a single iteration step. The convergence properties
have been investigated in detail. An extensive numerical study is presented in (Markotet
al., 2000).

A disadvantage of interval methods is the dependency problem: when a given vari-
able occurs more than once in an interval computation, it is treated as a different variable
in each occurrence. This causes widening of computed intervals making it more diffi-
cult to obtain tight intervals and increasing time required to solve problem using interval
global optimization algorithms. Standard interval arithmetic provides guaranteed bounds
but they are often too pessimistic. Standard interval arithmetic is used in global opti-
mization providing guaranteed solutions, but there are problems for which the time of
optimization is too long.

3. Balanced Random Interval Arithmetic

Random interval arithmetic proposed by Alt and Lamotte (2001) is obtained by choosing
standard or inner interval operations randomly with the same probability at each step of
the computation. The inner interval operations are defined as:

X + Y = [(x1 + y2) ∨ (x2 + y1)] ,

X − Y = [(x1 − y1) ∨ (x2 − y2)] ,
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X × Y =




[(xcyd) ∨ (xdyc)] , 0 /∈ X, 0 /∈ Y ,

[(x1yc) ∨ (x2yc)] , 0 ∈ X, 0 /∈ Y ,

[max {x1y2, x2y1} , min {x1y1, x2y2}] , 0 ∈ X, 0 ∈ Y ,

X/Y =

{
[(xc/yc) ∨ (xd/yd)] , 0 /∈ X, 0 /∈ Y ,

[(x1/yd) ∨ (x2/yd)] , 0 ∈ X, 0 /∈ Y .

A number of sample intervals are evaluated using random interval arithmetic. It is
assumed that the standard deviation of the centers of the evaluated intervals is small and
the distribution of radii of the evaluated intervals is normal. An approximate range of the
function

[µcenters − µradii − ασradii, µcenters + µradii + ασradii] (1)

is evaluated using the mean value of the centersµcenters, the mean value of the radii
µradii and the standard deviation of the radiiσradii. α is between 1 and 3 depending on
the number of samples and the desirable probability that the exact range is included in
the estimated range. Alt and Lamotee (2001) suggest that a compromise between effi-
ciency and robustness can be obtained usingα = 1.5 and 30 samples. Random interval
arithmetic provides bounds closer to the exact range when intervals are small, but it pro-
vides too narrow bounds when intervals are wide, therefore it can not be applied to global
optimization directly.

Balanced random interval arithmetic proposed by Zilinskas and Bogle (2003) is ob-
tained by choosing standard and inner interval operations at each step of the computation
randomly with predefined probabilities. The balanced random interval arithmetic pro-
vides wider or narrower bounds depending on the predefined probabilities.

A number of sample intervals are evaluated using balanced random interval arith-
metic. It is assumed that the distributions of centers and radii of the evaluated intervals
are normal. An approximate range of the function is evaluated using the mean values and
the standard deviations of centers and radii of the evaluated intervals.

Balanced random interval arithmetic with different probabilities was used to evalu-
ate ranges of the objective function of a multidimensional scaling problem over random
intervals. Experiments have shown that the distributions of centers are normal, but the
standard deviations are not small, as they were in (Alt and Lamotte, 2001) when intervals
were small. Therefore, instead of using Eq. 1, the standard deviation of the centers should
be used when the range of a function is evaluated:

[µcenters−ασcenters−µradii−ασradii, µcenters+ασcenters+µradii+ασradii] (2)

α = 3 and 30 samples are used in experiments.
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4. Experimental Study

The aim of the experiments is to evaluate the possibility of construction of the global
optimization algorithms based on the ideas of probabilistic generalized interval methods.
The assumption, that the distributions of centers and radii of the evaluated balanced ran-
dom intervals are normal, has to be verified. The experimental testing results with some
functions are presented.

Usually mathematical test functions defined by means of analytical formulas are used
to test global optimization algorithms and to evaluate their performance. Test functions
have different dimensions and different numbers of local and global minimizers. Bal-
anced random interval arithmetic with different probabilities of standard and inner inter-
val operations was used to evaluate ranges of some test functions over random intervals.

Rosenbrock test function is defined asf(x) = 100
(
x2

0 − x1

)2 + (x0 − 1)2, n = 2,
D = [−2, 2]2. The histograms of the centers and radii of the 10000 intervals evaluated
using balanced random interval arithmetic with probabilities 0.55, 0.6, 0.65 and 0.7 over
one random subregion are shown in Fig. 1. The centers and radii of the standard and inner
intervals over the same subregion are shown as vertical lines. The centers and radii of the
evaluated balanced random intervals are equal or close to the centers and radii of either
standard or inner intervals. The probability, that the center or radii of the evaluated bal-
anced random interval are equal or close to the center or radius of the standard interval, is

Fig. 1. The histograms of the centers and radii of the intervals of Rosenbrock test function evaluated using
balanced random interval arithmetic with probabilities 0.55, 0.6, 0.65 and 0.7 over a random subregion.
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equal to the probability of standard interval operations in each step of computations. The
exact range of the function over the same subregion is close to the standard interval. The
assumption, that the distributions of centers and radii of the evaluated intervals are nor-
mal, is wrong for this function. Therefore the balanced random interval arithmetic could
not be used to evaluate ranges of this mathematical test function and global optimiza-
tion algorithms based on balanced random interval arithmetic would not be applicable to
optimize it.

Six Hump Camel Back test function is defined asf(x) = 4x2
0 − 2.1x4

0 + 1
3x6

0 +
x0x1 − 4x2

1 + 4x4
1, n = 2, D = [−5, 5]2. The histograms of the centers and radii of the

10000 intervals evaluated using balanced random interval arithmetic with probabilities
0.55, 0.6, 0.65 and 0.7 over one random subregion are shown in Fig. 2. The centers
of the evaluated balanced random intervals are equal or close to the centers of either
standard or inner intervals. The probability, that the center of the evaluated balanced
random interval is equal or close to the center of the standard interval, is equal to the
probability of standard interval operations in each step of computations. The distribution
of radii of the evaluated balanced random intervals is far from normal. The exact range of
the function over the same subregion is close to inner interval. The assumption, that the
distributions of centers and radii of the evaluated intervals are normal, is wrong for this
function. Therefore balanced random interval arithmetic could not be used to evaluate
ranges of this mathematical test function and global optimization algorithms based on

Fig. 2. The histograms of the centers and radii of the intervals of Six Hump Camel Back test function evaluated
using balanced random interval arithmetic with probabilities 0.55, 0.6, 0.65 and 0.7 over a random subregion.
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balanced random interval arithmetic would not be applicable to optimize it.
Goldstein and Price test function is defined as

f(x) =
[
1 + (x0 + x1 + 1)2(19 − 14x0 + 3x2

0 − 14x1 + 6x0x1 + 3x2
1

]
×
[
30 + (2x0 − 3x1)2(18 − 32x0 + 12x2

0 + 48x1 − 36x0x1 + 27x2
1)
]
,

n = 2, D = [−2, 2]2. The histograms of the centers and radii of the 10000 intervals
evaluated using balanced random interval arithmetic with probabilities 0.55, 0.6, 0.65 and
0.7 over one random subregion are shown in Fig. 3. The distributions of centers and radii
of the evaluated balanced random intervals are far from normal. The assumption, that the
distributions of centers and radii of the evaluated intervals are normal, is wrong for this
function. Therefore balanced random interval arithmetic could not be used to evaluate
ranges of this mathematical test function and global optimization algorithms based on
balanced random interval arithmetic would not be applicable to optimize it.

Similar results have been obtained with some other simple mathematical test func-
tions (Shekel 5, Shekel 7, Shekel 10) which involve small number of computations. For
all investigated simple mathematical test problems the distributions of centers and radii
of the evaluated balanced random intervals are not normal. Possibly this is because test
functions are too simple and the number of involved computations is too small, which

Fig. 3. The histograms of the centers and radii of the intervals of Goldstein and Price test function evaluated
using balanced random interval arithmetic with probabilities 0.55, 0.6, 0.65 and 0.7 over a random subregion.
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makes distributions of centers and radii of evaluated intervals not normal. The assump-
tion, that the distributions of centers and radii of the evaluated intervals are normal, is
wrong for the simple mathematical test functions. Therefore balanced random interval
arithmetic could not be used to evaluate ranges of simple mathematical test functions and
global optimization algorithms based on balanced random interval arithmetic would not
be applicable to optimize them.

For some cases simple mathematical test problems are too simple or their dimension-
ality is too small. One of the ways to increase the hardness and dimensionality of test
functions is the generalization to multidimensional space. For example, the Generalized
Rosenbrock function could be defined as

f(x) =
n−1∑
i=1

[
100

(
x2

i − xi+1

)2
+ (xi − 1)2

]
, D = [−n, n]n.

Balanced random interval arithmetic with different probabilities was used to evalu-
ate ranges of the Generalized Rosenbrock function withn = 30 over random intervals.
The histograms of the centers and radii of the 10000 intervals evaluated using balanced
random interval arithmetic with probabilities 0.55, 0.6, 0.65 and 0.7 over one random
subregion are shown in Fig. 4. The centers and radii of the standard and inner intervals
over the same subregion are shown as vertical lines. The mean values of the centers and

Fig. 4. The histograms of the centers and radii of the intervals of the Generalized Rosenbrock function evaluated
using balanced random interval arithmetic with probabilities 0.55, 0.6, 0.65 and 0.7 over a random subregion.
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radii moves towards the center and radius of the standard interval when the probability
of standard interval operations is increasing. Normal distributions with evaluated means
and standard deviations are also shown. The distributions of the centers and radii are nor-
mal. Therefore the ranges of a function over a subregion could be evaluated using (2).
Balanced random interval arithmetic can be used to evaluate ranges of this function and
global optimization algorithms based on balanced random interval arithmetic would be
applicable to optimize it.

The ranges of the Generalized Rosenbrock function in 1000 random subregions have
been evaluated using balanced random interval arithmetic with different probabilities of
standard and inner interval operations. The ranges were evaluated using means and stan-
dard deviations of centers and radii of 30 balanced random intervals.α = 3 was used.
The histogram of smallest probabilities for which the evaluated ranges include the func-
tion values at 2000 uniformly distributed random points is shown in Fig. 5a. For 96.4%
of subregions the smallest probability for which the evaluated ranges include function
values at random points is less than 0.6. For 99.8% of subregions the smallest probability
for which the evaluated ranges include function values at random points is less than 0.65.
The mean ratio between widths of evaluated ranges and standard intervals depending on
the probability of standard interval operations is shown in Fig. 5b. When the probability
is 0.6, the mean ratio is 0.865, which means that evaluated ranges are 13.5% tighter.

Similar results have been obtained with the objective function of a multidimensional
scaling (MDS) problem with data from soft drinks testing (Mathar, 1996):

f(X) =
∑
j<i

(√√√√ 2∑
k=1

(xi,k − xj,k)2 − δij

)2

,

wherexi,1, xi,2 are the coordinates of theith object (i = 1 . . . 10 andj = 1 . . . 10) in two-
dimensional space,δij are the data for the problem – dissimilarities between soft drinks.
Balanced random interval arithmetic with different probabilities was used to evaluate
ranges of the MDS function over random intervals and it was shown in (Zilinskas and
Bogle, 2003) that the distributions of the centers and radii of intervals evaluated using
balanced random interval arithmetic are normal. Therefore the ranges of a function over a

Fig. 5. Results of experiments with the Generalized Rosenbrock function.
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Fig. 6. Results of experiments with MDS function.

subregion could be evaluated using (2). Balanced random interval arithmetic can be used
to evaluate ranges of this function and global optimization algorithms based on balanced
random interval arithmetic would be applicable to optimize it.

The ranges of MDS function in 1000 random subregions have been evaluated using
balanced random interval arithmetic with different probabilities of standard and inner
interval operations. The ranges were evaluated using means and standard deviations of
centers and radii of 30 balanced random intervals.α = 3 was used. The histogram of
smallest probabilities for which the evaluated ranges include the function values at 2000
uniformly distributed random points is shown in Fig. 6a. For 99.5% of subregions the
smallest probability for which the evaluated ranges include function values at random
points is less than 0.6. The mean ratio between widths of evaluated ranges and standard
intervals depending on the probability of standard interval operations is shown in Fig. 6b.
When the probability is 0.6, the mean ratio is 0.606 – evaluated ranges are 39.4% tighter.

Results of experiments with the Generalized Rosenbrock function and the practical
MDS problem show that the distributions of centers and radii of the evaluated balanced
random intervals are normal. The assumption, that the distributions of centers and radii
of the evaluated intervals are normal, is right for these functions. Therefore balanced ran-
dom interval arithmetic can be used to evaluate ranges of difficult functions. Balanced
random interval arithmetic provides not guaranteed but much tighter ranges than stan-
dard interval arithmetic. Therefore it seems promising to construct global optimization
algorithms based on ideas of probabilistic generalized interval methods and apply them
to solve practical global optimization problems.

5. Conclusions

The results of experimental testing of balanced random interval arithmetic with simple
mathematical test functions have shown that the assumption, that the distributions of
centers and radii of the evaluated balanced random intervals are normal, is wrong for such
functions. Therefore balanced random interval arithmetic could not be used to evaluate
ranges of them and global optimization algorithms based on balanced random interval
arithmetic would not be applicable to optimize simple mathematical test functions.
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However test results with the Generalized Rosenbrock test function and the practi-
cal MDS problem have shown that the distributions of centers and radii of the evaluated
balanced random intervals are normal. The assumption, that the distributions of centers
and radii of the evaluated intervals are normal, is right for these functions. Therefore bal-
anced random interval arithmetic can be used to evaluate ranges of difficult functions and
application of global optimization algorithms based on ideas of probabilistic generalized
interval methods to solve such problems seems promising.

The influence of the predefined probabilities of the standard and inner interval opera-
tions in each step of computation to the ranges of functions is experimentally investigated.
The value used for the probability depends on the balance required between efficiency
and robustness of global optimization algorithm. For the Generalized Rosenbrock func-
tion the value of 0.6 would give a 96.4% success rate and 13.5% tighter ranges. For the
MDS function the value of 0.6 would give a 99.5% success rate and 39.4% tighter ranges.
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Funkcij ↪u r ėži ↪u skaičiavimas naudojant balansuot↪a atsitiktin ↪e
interval ↪u aritmetik ↪a

Julius ŽILINSKAS, Ian David Lockhart BOGLE

Pateikiami ir aptariami balansuotos atsitiktinės interval↪u aritmetikos testavimo matematinėmis
testo funkcijomis ir praktine užduotimi rezultatai. Ištirta funkcij↪u rėži ↪u skaǐciavimo, panaudojant
balansuot↪a atsitiktin↪e interval↪u aritmetik↪a, galimyḃe. Eksperimentiškai ištirta nustatom↪u standar-
tinės ir vidiṅes interval↪u aritmetik↪u operacij↪u tikimybi ↪u ↪itaka ↪ivertinamiems funkcij↪u rėžiams.


