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Abstract. The paper presents the comparison of fuzzy conclusions derived from the use oft-norms
with the fuzzy conclusions derived from the use ofH-norm. The idea was to examine the appli-
cation ofH-logical norm to fuzzy reasoning, which is not monotonious while it is known that
t-norms used in fuzzy reasoning have the characteristic of monotonicity. The comparison of fuzzy
conclusions was performed by the use of coherence measure. The research was carried out on a
relatively small number of examples (nine) and it was shown that the fuzzy conclusions derived
from the use ofH-norm were the closest to the fuzzy conclusions derived fromTL-norm.
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1. Introduction

Working on the theory of probabilistic metric spaces and using Menger (1942) as a
source, Schweitzer and Sklar (1958; 1960) introduced a class of real binary operations
which they named triangular norms (t-norms). Today, there are different families of
t-norms which are used in fuzzy logic, neuro-fuzzy systems, games theory, information
theory, and in other fields related to the measure theory.

In the fuzzy sets theory,t-norms have a significant place since they provide models
for intersection and union operations on fuzzy sets. The laws of commutativity, associa-
tivity and monotonicity as well as the boundary conditions are satisfied byt-norms in the
interval [0, 1]. There are a great number oft-norms known today, and the best known
ones are applied in this paper (Pedrycz and Gomide, 1998):

1) TM (x, y) = min(x, y);
2) TP (x, y) = xy;
3) TL(x, y) = max(0, x+ y − 1);

and their dualt-co-norms:
1) SM (x, y) = min(x, y);
2) SP (x, y) = x+ y − xy;
3) SL(x, y) = min(1, x+ y).
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The basic idea of the paper is to compare fuzzy conclusions derived by applying
t-norms with fuzzy conclusions derived by applyingH-norm.H-norm was introduced
by Professor Petar Hotomski and it is described in Section 2. It is a rational Boolean norm
[0, 1], which satisfies all laws of Boolean logic, even those whicht-norms do not satisfy.
TheH-norm possesses the properties of commutativity, associativity and the boundary
conditions, the same as thet-norms. However,H-norm is not monotonous, so it is in-
teresting to compare the fuzzy conclusions obtained by applying this norm to the fuzzy
conclusions obtained by applyingt-norms.

In Section 3 the cutting method is described, according to (Jager, 1995), which gives a
mechanism for deriving fuzzy conclusions from fuzzy rule base. There are nine examples
of fuzzy rule base, which vary in number and complexity of fuzzy rules.

The comparison of fuzzy conclusions, obtained by the cutting method for theH-norm
and thet-norms, is performed by using coherence measure which is based on the maxi-
mum distance between the elements of the two fuzzy sets. A short review of the charac-
teristics and methods of construction of coherence measure is given in Section 4.

In Section 5, the comparison between fuzzy conclusions derived by the use of the
H-norm with the fuzzy conclusions derived by the use oft-norms is described, as well
as the order between average measures of similarity for every two norms. The average
measure of similarity for every norm with other norms is also given.

The paper ends with the conclusion where the obtained results are analyzed.

2. H-Norm

The definition and the characteristics ofH-norm appears according to (Hotomski, 1975;
Hotomski and Radojević, 2002).

DEFINITION 1. Letf(z1, z2, . . . , zk) = 2k−1z1 +2k−2z2 + · · ·+20zk, zi∈{0, 1} = L2,
∗ be one of the operators AND, OR andx = f(a1, a2, . . . , ak), y = f(b1, b2, . . . , bk),
x, y ∈ Lk

2 .

x∗y = def =f (a1 ∗ b1, a2 ∗ b2, . . . , ak ∗ bk) ,

¬x = def= f (¬ a1,¬ a2, . . . ,¬ ak) . (1)

For these operationsLk
2 is regular Boolean algebra with the first element 0 and the

last(2k − 1).

For each propositional formula,F (p1, p2, . . . , pn), a termF (k1, k2, . . . , kn) is intro-
duced in whichki = In/(In−i +2), In = 2s −1, s = 2n, i = 1, 2, . . . , n and it is shown
that the following applies:

F (p1, p2, . . . , pn) is tautology if and only ifF (k1, k2, . . . , kn) = In.
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Additionally, the following holds for the operations on{0, 1, 2, . . . , In}:

¬x = In − x; x ∨ y = x+ y − x ∧ y = x+ ¬x ∧ y; x⇒ y = ¬x+ x ∧ y;
x⇔ y = ¬x ∧ ¬ y + x ∧ y = ¬ (x+ y) + 2(x ∧ y),

where+, − are ordinary arithmetic operations.
Dividing every element ofLs

2, s = 2n by In leads to the set{0, 1/In, 2/In, . . . , 1}
which containsIn+1 element. By increasing the value ofn, sufficiently fine segmentation
of [0, 1] may be obtained.

Definition and characteristics ofH-norm
Let{0, 1/In, 2/In, . . . , (In−1)/In, 1} be a segmentation of the interval [0, 1], where

In = 2s − 1, s = 2n. Let x, y ∈ [0, 1] such thatx, y ∈ {0, 1/In, 2/In, . . . , (In −
1)/In, 1}. Then:

phcn(x, y) = def= (xIn ∧ yIn)/In, (2)

where∧ is AND operator on{0, 1, 2, . . . , In} determined by Definition 1.

Lemma 1. If there exists n, so that x, y ∈ {0, 1/In, 2/In, . . . , (In − 1)/In, 1}, then
phcn(x, y) = phcn+1(x, y), i.e., phc is independent of n.

Lemma 2. There exists a rational number x ∈ [0, 1], for which there is no segmentation,
so that xIn is a natural number.

Consequence
For each segmentation of the interval [0, 1] determined by{0, 1/In, 2/In, . . . ,

(In − 1)/In, 1} andx ∈ [0, 1] it is true thatk/In � x � (k + 1)/In, i.e.,k � x·In �
(k + 1), k ∈ {0, 1, 2, . . . , In − 1}.

The function round(x.In) = k1 performs rounding of the arguments respecting the
evenness rule, sok1 is a natural numberk or k+ 1. ForxIn = k+ 0.5, the value ofk1 is
equal either tok (if k is an even number) or tok + 1 (if k is an odd number).

Sincex1 = k1/In = round(x.In)/In = (x.In + R)/In = x + R/In, |R| � 0.5,
| x1 − x| � 1/(2In), the upper error margin when substitutingx by x1 is 1/(2In).
We name1/(2In) sensitivity coefficient on an integerk. By proper selection ofn, the
sensitivity coefficient may be decreased to the required value. Forn = 4, I4 is equal
to 65535, so that the sensitivity coefficient becomes 0.000008, the value that completely
satisfies practical requirements since it provides the accuracy up to five decimals forx ∈
[0, 1].

Now,phc(x, y) can be defined for anyx, y ∈ [0, 1].

DEFINITION 2. H-norm andH-co-norm are defined by the following:

phc(x, y) = def= (round(xIn) ∧ round(yIn)) /In, (3)
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where∧ is AND operator on the set{0, 1, 2, . . . , In}, In = 2s − 1, s = 2n defined
by (1), while round(xIn) = x1In = k1 ∈ {0, 1, 2, . . . , In} provides the substitution of
argumentx by x1 which is accurate up to1/(2In).

phd(x, y) = def= (round(xIn) ∨ round(yIn)) /In, (4)

where∨ is OR operator on the set{0, 1, 2, . . . , In}, In = 2s − 1, s = 2n defined by (1).
H-normphc(x, y) andH-co-normphd(x, y) define operators AND and OR, whereby

all the Boolean properties of these operators are preserved.

The following properties are directly verified forx ≈ x1 andy ≈ y1 within the limits
constituted by the sensitivity coefficient1/(2In):

1) phd(x, y) = x+ y − phc(x, y),
2) phc(x, x) = x,

3) phc(0, y) = 0,

4) phc(1, y) = y,

5) phc(x, y) is not monotone,

6) phc(x, y) is extremely sensitive to the change ofx, y, i.e., a small modification of
arguments significantly changes the value ofphc (because of the property of∧ on
the set{0, 1, 2, . . . , In}).

Other logical operations on [0, 1] can be analogously defined.
Negation is defined as:

¬x = def= ¬ round(xIn)/In = ¬ (x1In)/In = (In − x1In)/In = 1 − x1.

Within the limits of the sensitivity coefficient, forx ≈ x1 it is true that¬x = 1 − x;
phc(x,¬x) = 0; phd(x,¬x) = 1. The BooleanH-norm is the natural generalization
of the logical conjunction of the set{0, 1} to the set{0, 1, 2, . . . , In}, In = 2s, s = 2n,
i.e., to [0, 1]. The monotonisity is absent here, but the characteristics of AND operator
are kept in the regular Boolean algebra. Fig. 1 presents a graphic description ofH-norm.

3. Deriving Fuzzy Conclusions

The fuzzy propositions are the basic elements of fuzzy logic and fuzzy reasoning. Logic
junctions AND and OR are used to combine fuzzy propositions. These logic junctions are
respectively interpreted ast-norms andt-co-norms. There is no general rule for choosing
t-norm andt-co-norm in the process of fuzzy reasoning, since the choice depends on the
domain of application.TM -norm, proposed by Zadeh, enables getting the same informa-
tion by combining the two identical fuzzy propositions, which will not be the case with
application of othert-norms. If the fuzzy propositions are not the same but joined and if
they affect each other, othert-norms should be applied.
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Fig. 1. Visualization ofH-norm (Hotomski, 2002).

The fuzzy rules are “if-then” statements, the premises and consequences of which
consist of fuzzy propositions. Dubois and Prade (1991) made a summary of different
types of fuzzy implications. One of them, theT -implication, is discussed in this paper.
T -implication is an implication interpreted as at-norm, and is usually used in fuzzy
control (Jager, 1995).

The cutting method is used in the paper to derive fuzzy conclusion for the given fuzzy
rule or the fuzzy rule base.

The cutting method is one of the methods of deriving fuzzy conclusion for the given
fuzzy rule, or for the given fuzzy rule base (Jager, 1995):

Let the given base of theNr fuzzy rules and letrk be the rule:

rk : If x1 isA1,k AND x2 isA2,k, theny isBk,

and let the initial facts be A1’ and A2’.
By the cutting method, the degree of matchingαi,k of the initial factA′

i and the fuzzy
setAi,k is defined as:

αi,k = hgt(Ai′ ∩Ai,k),

where the intersection of fuzzy sets is interpreted byt-norm. For the given example,
the degree of matchingαk of the fuzzy rulerk with the initial facts is calculated by
application of thet-norm to the degrees of matchingαi,k. If in the fuzzy rulerk, the
fuzzy propositions are joined with the junction OR, then the degree of matchingαk is
calculated by application oft-co-norm to the degrees of matchingαi,k.

Deriving the fuzzy conclusionB′
k for fuzzy rulerk is defined as:

B′
k = T (αk, Bk),

whereT is t-norm.
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The final fuzzy conclusion B is derived by aggregation operator for the fuzzy rule
base. The combination of fuzzy rule base in a single fuzzy relation is called aggregation.
The aggregation operator is interpreted by disjunction, which is most frequently repre-
sented by max operator (as in this paper), but it is generally represented byt-co-norm.

The local inference is used in the paper in order to derive fuzzy conclusion from the
fuzzy rule base. Apparently, the inference of each individual fuzzy rule is done first and
after that the aggregation of the derived fuzzy conclusions into one final conclusion. By
global inference the fuzzy rule base, presented by fuzzy relations, is first transformed
into one fuzzy relation by use of aggregation operator. IfT -implications are used, there
is no difference in the results obtained by local and global inference, because disjunction
is used as aggregation operator. If fuzzy implications based on classic implications are
used, differences in results occur. Local inference gives fuzzy conclusions which carry
less information than the fuzzy conclusions derived by global inference.

Deriving fuzzy conclusions from the fuzzy rule base by the use ofH-norm and the
above-mentionedt-norms has been performed for nine examples (Nikolic, 2002). In the
first example, the fuzzy rule base is simple (one initial fact and one fuzzy rule), and in
each following example the fuzzy rule base is more complex. Table 1 reviews these nine
examples. The fuzzy setsAi andBi are defined on the setX = {x1, x2, x3} and are
given in the third column of Table 1.

Note. The given fuzzy sets areA(a1, a2, a3) andB(b1, b2, b3). It will be considered
that the fuzzy setA is “wider” than the fuzzy setB if it is ai � bi for everyi ∈ {1, 2, 3}
(if for every i ∈ {1, 2, 3} refers to the equality, then the fuzzy setsA andB are equal).
The fuzzy setB will be considered “narrower” than the fuzzy setA.

Table 2 reviews the fuzzy conclusions derived from the use ofTM , TP , TL andH-
norm. It can be noticed that the fuzzy conclusions derived from the use ofTM -norm are
wider than the fuzzy conclusions derived forTP -norm, whereas the fuzzy conclusions
derived from the use ofTP -norm are wider than the fuzzy conclusions derived from the
use ofTL-norm. The fuzzy conclusions derived fromH-norm are narrower than the ones
derived from the use ofTM -norm and wider than fuzzy conclusions derived from the use
of TL-norms. When compared to the fuzzy conclusions derived from the use ofTP -norm,
the fuzzy conclusions withinH-norm can be wider (2, 4, 5, 6, 7, 9) or narrower (1, 3, 8).

4. Comparison of Finite Fuzzy Sets by Use of Coherence Measure

To define the similarities between the two finite fuzzy sets, a coherence measure was
used, based on the maximum distance between the elements of the two fuzzy sets. The
summary of the definitions and the characteristics of coherence measures is given below
(Royo and Verdegay, 2000).

DEFINITION 3. LetX = {x1, . . . , xm} be a finite set andP f (X), the set of fuzzy sets
onX , we say that cohe: P f (X) × P f (X) → [0, 1] is acoherence measure onP f(X)
iff holds:
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Table 1

Fuzzy rule base

Ordinal
number

Fuzzy rule base Fuzzy sets

1 Initial fact: A0 A0(0.6,1,0.3)
Rule 1: A1→ B1 A1(1,0.7,0.5)
Fuzzy conclusion: B. B1(0.3,0.8,1)

2 Initial fact: A0 A0(0.1,0.2,0.3)
Rule 1: notA1→ B1 A1(0.4,0.3,0.5)
Fuzzy conclusion: B. B1(0.7,0.2,0.1)

3 Initial facts: A0 B0 A0(0.1,0.2,0.3)
Rule 1: A1 AND A2→ B1 A1(0.4,0.3,0.5)
Fuzzy conclusion: B B0(1,0.5,0) A2(0.2,0.4,0.8) B1(0.7,0.2,0.1)

4 Initial facts: A0 B0 A0(0.1,0.2,0.3)
Rule 1: notA1 AND A2→ B1 A1(0.4,0.3,0.5)
Fuzzy conclusion: B B0(1,0.5,0) A2(0.2,0.4,0.8) B1(0.7,0.2,0.1)

5 Initial facts: A0 A0(0.6,1,0.3)
Rule 1: A1→ B1 A1(1,0.7,0.5)
Rule 2: A2→ B2 B1(0.3,0.8,1)
Fuzzy conclusion: B A2(0.1,0.2,0.3) B2(0.4,0.5,0.6)

6 Initial facts: A0 A0(0.6,1,0.3)
Rule 1: A1→ B1 A1(1,0.7,0.5)
Rule 2: A2→ B2 B1(0.3,0.8,1)
Rule 3: A3→ B3 A2(0.1,0.2,0.3)
Fuzzy conclusion: B B2(0.4,0.5,0.6) A3(0.7,0.3,0.5) B3(0.4,0.6,0.1)

7 Initial facts:A0 B0 A0(0.5,0.7,1)
Rule 1: notA1→ B1 A1(0.6,0.4,0.5)
Rule 2: A1 AND A2→ B2 B1(1,0.2,0.4)
Rule 3: A3→ B3 B0(0.4,0.7,0.2)
Fuzzy conclusion: B A2(0.9,0.8,0.3) B2(1,0.5,0.8)

A3(0.5,0.2,0.9) B3(0.4,1,0.8)

8 Initial facts: A0 B0 A0(0.5,0.7,1)
Rule 1: A1 OR notA2→ B1 A1(0.6,0.4,0.5)
Rule 2: notA1 AND A3→ B2 B0(0.3,1,0.9)
Fuzzy conclusion: B A2(0.9,0.8,0.3) B1(1,0.2,0.4)

B2(1,0.5,0.8) A3(0.5,0.2,0.9)

9 Initial facts: A0 A0(0.6,1,0.3)
Rule 1: A1→ B1 A1(1,0.7,0.5)
Rule 2: A2→ B2 B1(0.3,0.8,1)
Rule 3: A3→ B3 A2(0.4,0.6,0.7)
Rule 4: A4→ B4 B2(0.8,0.5,0.9)
Fuzzy conclusion: B A3(0.1,0.8,1) B3(0.8,0.2,0.3)

A4(0.9,0.2,0.9) B4(0.5,0.6,0.7)
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Table 2

Fuzzy conclusions derived from the fuzzy rule base

Example TM norm TP norm TL norm H norm

1 B (0.3, 0.7, 0.7) B(0.21, 0.56, 0.7) B(0, 0.5, 0.7) B(0, 0.5, 0.7)

2 B (0.3, 0.2, 0.1) B(0.105, 0.03, 0.015) B(0, 0, 0) B(0.2, 0.2, 0.067)

3 B (0.3, 0.2, 0.1) B(0.021, 0.006, 0.003) B(0, 0, 0) B(0, 0, 0)

4 B (0.3, 0.2, 0.1) B(0.021, 0.006, 0.003) B(0, 0, 0) B(0.2, 0.2, 0.067)

5 B (0.3, 0.7, 0.7) B(0.21, 0.56, 0.7) B(0, 0.5, 0.7) B(0.267, 0.5, 0.7)

6 B (0.4, 0.7, 0.7) B(0.21, 0.56, 0.7) B(0, 0.5, 0.7) B(0.267, 0.566, 0.7)

7 B (0.6, 0.9, 0.8) B(0.5, 0.9, 0.72) B(0.5, 0.9, 0.7) B(0.567, 0.9, 0.767)

8 B (0.7, 0.5, 0.6) B(0.815, 0.415, 0.515) B(1, 0.2, 0.4) B(0.633, 0.5, 0.501)

9 B (0.8, 0.7, 0.7) B(0.64, 0.56, 0.7) B(0.6, 0.5, 0.7) B(0.8, 0.5, 0.7)

C1. cohe(A,B) = cohe(B,A),
C2. cohe(A,Bc) = 1 − cohe(A,B),
C3. cohe(∅, X) = 0.

Lemma 3. Let cohe: P f (X) × P f (X) → [0, 1] be a coherence measure, then:
a) cohe(Ac, Bc) = cohe(A,B);
b) cohe(∅,∅) = cohe(X,X) = 1;
c) If A∗(x) = 0.5∀x, then ∀A ∈ P f (X)cohe(A,A∗) = 0.5.
Coherence measures are not monotonous.

Lemma 4. Let cohe: P f(X)×P f (X) → [0, 1] be a coherence measure. Then, it is not
true that:

(1) ∀A,B,C,D ∈ P f (X)

A ⊆ B
C ⊆ D

}
→ cohe(A,C) � cohe(B,D)

equally, it is not true either that:
(2) ∀A,B,C,D ∈ P f (X)

A ⊆ B
C ⊆ D

}
→ cohe(A,C) � cohe(B,D).

The following lemma presents the method of coherence measure construction star-
ting from metrics. Elements ofP f (X) are mappings fromX to [0, 1], so that it can be
established directly isomorphismP f (X) ≈ [0, 1]m.
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Lemma 5. Let X be a finite set of m elements, P f (X) the set of fuzzy subsets on X , let
d: P f (X)xP f (X) → [0, 1] be a bounded metric defined by:

d(A,B) =
( m∑

i=1

h(ai, bi)
)1/r

, r � 1.

Then starting from d, a coherence measure can be constructed as:

β(A,B) =
1 + d(A,Bc) − d(A,B)

2

if and only if:
a)h(0, 1) = (1/m),
b) h(a, 1 − b) = h(1 − a, b) ∀a, b ∈ [0, 1].

The previous lemma also shows the existence of coherence measures. By applying
this lemma tor-metrics(r � 1) onP f (X) ∼= [0, 1]m, various coherence measures can
be obtained:

d(A,B) =
(

1
m

m∑
i=1

|ai − bi|r
)1/r

.

5. Comparison of Fuzzy Conclusions

For comparison of fuzzy conclusions derived from the fuzzy rule base given in the men-
tioned examples (Table 1), the coherence measureβr∞ derived from the metrics is used:

d(A,B) = max
1�i�m

|ai − bi| (5)

and the formula

β(A,B) =
1 + d(A,Bc) − d(A,B)

2
, (6)

where

d(A,BC) = max
1�i�m

|ai − (1 − bi)| = max
1�i�m

|ai + bi − 1|. (7)

The coherence measureβr∞ is defined for every two corresponding fuzzy conclusions
from Table 2, which is derived from different norms, and whose measures are shown in
Table 3.

Table 3 presents means of derived coherence measures of fuzzy conclusions within
every two norms, and average measures of similarity for every two normsβ̄ij

r∞. It is
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Table 3

Coherence measures of fuzzy conclusions

TM ; TP TM ; TL TM ; H TP ; TL TP ; H TL; H

βMP
r∞ βML

r∞ βMH
r∞ βPL

r∞ βPH
r∞ βLH

r∞

1 0.675 0.7 0.7 0.79 0.79 1

2 0.845 0.8 0.8665 0.94 0.874 0.8665

3 0.809 0.8 0.8 0.988 0.988 1

4 0.836 0.8 0.8865 0.952 0.868 0.8665

5 0.675 0.7 0.6165 0.79 0.7315 0.733

6 0.605 0.6 0.633 0.79 0.733 0.733

7 0.85 0.85 0.8835 0.89 0.8665 0.8665

8 0.7 0.7 0.617 0.8 0.633 0.633

9 0.64 0.6 0.7 0.67 0.64 0.6

β̄ij
r∞ 0.737 0.727 0.742 0.845 0.7915 0.8109

evident that inequality applies:

β̄PL
r∞ > β̄LH

r∞ > β̄PH
r∞ > β̄MH

r∞ > β̄MP
r∞ > β̄ML

r∞ . (8)

Thus, the most similar are the fuzzy conclusions derived withinTP andTL-norms,
while withinH-norm are found fuzzy conclusions which are most similar to fuzzy con-
clusions derived withinTL-norm, and then withinTP andTM -norm. According to (8),
there is a bigger similarity of fuzzy conclusions forH-norm to the fuzzy conclusions for
all the threet-norms than the similarity of the fuzzy conclusions withinTM -norms to the
fuzzy conclusions withinTP andTL-norm.

Defining the average measure of similarity of the norm to other norms
At this point, the average measure of similarity of one norm to the other norms is

defined:
1. Average measure of similarity ofTM -norm toTP , TL andH-norm:

βTM =
β̄MP

r∞ + β̄ML
r∞ + β̄MH

r∞
3

=
0.737 + 0.727 + 0.742

3
= 0.735.

2. Average measure of similarity ofTP -norm toTM , TL andH-norm:

βTP =
β̄MP

r∞ + β̄PL
r∞ + β̄PH

r∞
3

=
0.737 + 0.845 + 0.7915

3
= 0.791.

3. Average measure of similarity ofTL-norm toTM , TP andH-norm

βTL =
β̄ML

r∞ + β̄PL
r∞ + β̄LH

r∞
3

=
0.727 + 0.845 + 0.8109

3
= 0.794.
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4. Average measure of similarity ofH-norm toTM , TP , TL-norm

βH =
β̄MPh

r∞ + β̄PPh
r∞ + β̄LH

r∞
3

=
0.742 + 0.7915 + 0.8109

3
= 0.7808.

Consequently, the following order of average measures of similarity applies:

βTM < βH < βTP < βTL . (9)

The smallest average measure of similarity isβTM of theTM -norm to other norms.
The average measure of similarity ofH-norm to other norms,βH , is bigger thanβTM .
The biggest is the average measure of similarityβTL of TL-norm to other norms.

6. Conclusion

The similarity of fuzzy conclusions derived by the use ofH-norm with the fuzzy con-
clusions derived by use oft-norms is determined by the coherence measure of similarity.
In inequality (8), the order between means of coherence measures is defined within each
two norms. According to this inequality, the average measure of similarity ofH-norm
andTL-norm is greater than the average measure of similarity ofH-norm andTP -norm,
and the average measure of similarity ofH-norm andTP -norm is greater than the average
measure of similarity ofH-norm andTM -norm. In other words, the fuzzy conclusions
derived by use ofH-norm are the most similar to the fuzzy conclusions derived from
TL-norm, thenTP -norm and the least similarity is with the fuzzy conclusions derived by
the use ofTM -norm (Fig. 2).

The average measures of similarity ofH-norm with every individualt-norm (TP , TL,
TM ) are greater than the average measures of similarity ofTM -norm with TP or TL-
norm (8). Thus, fuzzy conclusions obtained byH-norm are more similar to the fuzzy
conclusions derived by the use ofTP -norm than the fuzzy conclusions obtained by the
use ofTM -norm.

Fig. 2. Average measure of similarity for every two norms (Nikolić, 2002).
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By forming the order between average measures of similarity of one norm with the
other norms (9) it was established that the average measure of similarity ofH-norm with
TP , TL andTM -norm is greater than the average measure of similarity ofTM -norm with
TP , TL andH-norm.

It should be underlined here that the research was performed on a small number of
examples, so that it has to be confirmed on a greater number of examples.
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H-logini ↪u norm ↪u palyginimas su kai kuriomis t-normomis

Branka NIKOLIC, Petar HOTOMSKI

Straipsnyje pateiktas neryški↪uj ↪u (angl. fuzzy) išvad↪u, gaut↪u naudojantt-normas irH-norm↪a,
palyginimas.H-norm↪a 1975 m. pasīulė vienas iš straipsnio autori↪u P. Hotomski.H-norma yra
nemonotoniṅe, ot-normos, naudojamos neryškiajame samprotavime, yra monotoninės. Neryškio-
sios išvados buvo palygintos naudojant koherentiškumo mat↪a. Tyrimas atliktas naudojant palyginus
mažai testini↪u pavyzdži↪u (devynis). Jis paroḋe, kad artimiausios neryškiosioms išvadoms, gautoms
pagalH-norm↪a, buvo neryškiosios išvados, gautos pagalTL-norm↪a.


