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Abstract. The paper presents the comparison of fuzzy conclusions derived from thetuserafis

with the fuzzy conclusions derived from the useffnorm. The idea was to examine the appli-
cation of H-logical norm to fuzzy reasoning, which is not monotonious while it is known that
t-norms used in fuzzy reasoning have the characteristic of monotonicity. The comparison of fuzzy
conclusions was performed by the use of coherence measure. The research was carried out on a
relatively small number of examples (nine) and it was shown that the fuzzy conclusions derived
from the use off-norm were the closest to the fuzzy conclusions derived ffgamorm.
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1. Introduction

Working on the theory of probabilistic metric spaces and using Menger (1942) as a
source, Schweitzer and Sklar (1958; 1960) introduced a class of real binary operations
which they named triangular norms-forms). Today, there are different families of
t-norms which are used in fuzzy logic, neuro-fuzzy systems, games theory, information
theory, and in other fields related to the measure theory.

In the fuzzy sets theory;norms have a significant place since they provide models
for intersection and union operations on fuzzy sets. The laws of commutativity, associa-
tivity and monotonicity as well as the boundary conditions are satisfigehlmyms in the
interval [0, 1]. There are a great numbertaefiorms known today, and the best known
ones are applied in this paper (Pedrycz and Gomide, 1998):

1) TM(ma y) = min(xv y)v

2)Tp(z,y) = zy;

3)TL(x,y) = max(0,z +y — 1);
and their duat-co-norms:

1) SM(ma y) = min(wa y)’

2)Sp(z,y) =z +y — xy;

3) Sp(x,y) = min(l,z + y).
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The basic idea of the paper is to compare fuzzy conclusions derived by applying
t-norms with fuzzy conclusions derived by applyifgnorm. H-norm was introduced
by Professor Petar Hotomski and it is described in Section 2. Itis a rational Boolean norm
[0, 1], which satisfies all laws of Boolean logic, even those whidlorms do not satisfy.

The H-norm possesses the properties of commutativity, associativity and the boundary
conditions, the same as thlienorms. However/-norm is not monotonous, so it is in-
teresting to compare the fuzzy conclusions obtained by applying this norm to the fuzzy
conclusions obtained by applyingnorms.

In Section 3 the cutting method is described, according to (Jager, 1995), which gives a
mechanism for deriving fuzzy conclusions from fuzzy rule base. There are nine examples
of fuzzy rule base, which vary in number and complexity of fuzzy rules.

The comparison of fuzzy conclusions, obtained by the cutting method féf therm
and thet-norms, is performed by using coherence measure which is based on the maxi-
mum distance between the elements of the two fuzzy sets. A short review of the charac-
teristics and methods of construction of coherence measure is given in Section 4.

In Section 5, the comparison between fuzzy conclusions derived by the use of the
H-norm with the fuzzy conclusions derived by the use-obrms is described, as well
as the order between average measures of similarity for every two norms. The average
measure of similarity for every norm with other norms is also given.

The paper ends with the conclusion where the obtained results are analyzed.

2. H-Norm

The definition and the characteristicsiéfnorm appears according to (Hotomski, 1975;
Hotomski and Radoje@i 2002).

DEFINITION 1. Letf(z1,22,...,2;) = 28 2y + 2229 4+ 42024, 2,€{0,1} = Lo,
* be one of the operators AND, OR and= f(a1,as,...,ax), y = f(b1,ba,...,bk),
z,y € Lk

wxy =91 =F (a1 by, az % ba, ... ap % by)

- =%"= f(=ai,nas,...,map). 1)

For these operationk} is regular Boolean algebra with the first element 0 and the
last (2% — 1).

For each propositional formuld; (p1, p2, . . .,pn), a termF (k1, ko, . .., ky) is intro-
duced inwhichk; = I, /([,,—; +2), [, =2°—1,s =2",i=1,2,...,nand itis shown
that the following applies:

F(p1,p2,...,pn) istautology if and only if F'(k1, ka, ..., kn) = In.
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Additionally, the following holds for the operations ¢, 1,2, ..., I, }:

“x=I,—x;, zVy=zst+y—zczANy=x+-2xANy; r=>y="2+xANYy;
rey=—xA-y+trzAy=-(x+y)+2zAy),

where+, — are ordinary arithmetic operations.

Dividing every element of.5, s = 2" by I,, leads to the se{0,1/1,,,2/1,,...,1}
which containd,,+1 element. By increasing the valuemafsufficiently fine segmentation
of [0, 1] may be obtained.

Definition and characteristicsof H-norm

Let{0,1/1,,2/1L,,...,(I,—1)/I,,1} be a segmentation of the interval [0, 1], where
I, =2°—1,s = 2™ Letz,y € [0,1] such thatz,y € {0,1/1,,2/L,,...,(I, —
1)/I,,1}. Then:

pheq(x,y) —def_ (xIn ANylp)/In, 2
whereA is AND operator on{0,1,2,..., I, } determined by Definition 1.

Lemmal. If there exists n, so that =,y € {0,1/1,,2/I,,...,(I, — 1)/I,,1}, then
phen(z,y) = phenta(z,y), i.e., phe isindependent of n.

Lemma 2. Thereexistsarational number x € [0, 1], for which thereis no segmentation,
so that z1,, isa natural number.

Consequence

For each segmentation of the interval [0, 1] determined{by 1/I,,, 2/1,,...,

(I, —1)/I,,1} andx € [0,1] itis true thatk /I, < x < (k+ 1)/, i.e .k < z'I, <
(k+1),ke{0,1,2,...,1, —1}.

The function roundz-I,,) = k; performs rounding of the arguments respecting the
evenness rule, S, is a natural numbek or k + 1. ForzI,, = k£ + 0.5, the value oft; is
equal either td: (if £ is an even number) or to+ 1 (if k£ is an odd number).

Sincex; = k1/I, = roundz1,)/I, = (v'I, + R)/I, = = + R/I,, |R| < 0.5,
| 1 — x| < 1/(2I,), the upper error margin when substitutingoy z; is 1/(21,,).
We namel/(21I,,) sensitivity coefficient on an integetk. By proper selection of,, the
sensitivity coefficient may be decreased to the required valuenkFer4, I, is equal
to 65535, so that the sensitivity coefficient becomes 0.000008, the value that completely
satisfies practical requirements since it provides the accuracy up to five decimals for
[0, 1].

Now, phc(x,y) can be defined for any, y € [0, 1].

DEFINITION 2. H-norm andH -co-norm are defined by the following:

phe(x,y) == (round(z1,,) A round(y1,,)) /I, ©))
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whereA is AND operator on the sef0,1,2,...,1,}, I, = 2° — 1, s = 2™ defined
by (1), while round«1I,,) = 11, = k1 € {0,1,2,...,I,} provides the substitution of
argumentz by z; which is accurate up tb/(21,,).

phd(z,y) =%'= (round(21,,) v round(y1,,)) /I, 4)

whereV is OR operator onthe s¢0,1,2,...,1,}, I, = 2° — 1, s = 2™ defined by (1).
H-normphe(x, y) and H-co-normphd(z, y) define operators AND and OR, whereby
all the Boolean properties of these operators are preserved.

The following properties are directly verified for~ z; andy ~ y; within the limits
constituted by the sensitivity coefficieht(21,,):

1) phd(z,y) = = +y — phe(x, y),

2) phe(z, x) = x,
3) phe(0,y) =0,
4) phe(l,y) =y,
5) phe(z,y) is not monotone,

6) phc(z,y) is extremely sensitive to the changexofy, i.e., a small modification of
arguments significantly changes the valugkf (because of the property ofon
the sef{0,1,2,...,1,}).

Other logical operations on [0, 1] can be analogously defined.

Negation is defined as:

—~x =%= —round(z1,)/I, = = (211,) /I, = (I, — x11,) /I, = 1 — z1.
Within the limits of the sensitivity coefficient, far =~ z; itis true that-z = 1 — z;

phe(z,—~x) = 0; phd(x,—z) = 1. The Booleand-norm is the natural generalization
of the logical conjunction of the s¢b, 1} to the sef{0, 1,2,...,I,}, I, = 2%, s = 2",

i.e., to [0, 1]. The monotonisity is absent here, but the characteristics of AND operator

are kept in the regular Boolean algebra. Fig. 1 presents a graphic descripticnaim.

3. Deriving Fuzzy Conclusions

The fuzzy propositions are the basic elements of fuzzy logic and fuzzy reasoning. Logic
junctions AND and OR are used to combine fuzzy propositions. These logic junctions are

respectively interpreted asnorms and-co-norms. There is no general rule for choosing

t-norm andi-co-norm in the process of fuzzy reasoning, since the choice depends on the

domain of applicationT’y;-norm, proposed by Zadeh, enables getting the same informa-
tion by combining the two identical fuzzy propositions, which will not be the case with
application of othet-norms. If the fuzzy propositions are not the same but joined and if
they affect each other, otheinorms should be applied.
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Fig. 1. Visualization of/-norm (Hotomski, 2002).

The fuzzy rules areif-then” statements, the premises and consequences of which
consist of fuzzy propositions. Dubois and Prade (1991) made a summary of different
types of fuzzy implications. One of them, tliéimplication, is discussed in this paper.
T-implication is an implication interpreted astanorm, and is usually used in fuzzy
control (Jager, 1995).

The cutting method is used in the paper to derive fuzzy conclusion for the given fuzzy
rule or the fuzzy rule base.

The cutting method is one of the methods of deriving fuzzy conclusion for the given
fuzzy rule, or for the given fuzzy rule base (Jager, 1995):

Let the given base of th&r fuzzy rules and let;, be the rule:

ri 2 If 21 1S Ay ), AND x5 is Ag i, theny is By,

and let the initial facts be A1’ and A2'.
By the cutting method, the degree of matching, of the initial factA; and the fuzzy
setA, ;. is defined as:

Qi = hgt(Az" N Ai,k)a

where the intersection of fuzzy sets is interpretedtfmorm. For the given example,
the degree of matching, of the fuzzy ruler, with the initial facts is calculated by
application of thef-norm to the degrees of matching ;. If in the fuzzy ruler;, the
fuzzy propositions are joined with the junction OR, then the degree of matehing
calculated by application gfco-norm to the degrees of matchiagy,.

Deriving the fuzzy conclusiof;, for fuzzy ruler;, is defined as:

B}, = T(ax, By),

whereT is t-norm.
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The final fuzzy conclusion B is derived by aggregation operator for the fuzzy rule
base. The combination of fuzzy rule base in a single fuzzy relation is called aggregation.
The aggregation operator is interpreted by disjunction, which is most frequently repre-
sented by max operator (as in this paper), but it is generally representexblyorm.

The local inference is used in the paper in order to derive fuzzy conclusion from the
fuzzy rule base. Apparently, the inference of each individual fuzzy rule is done first and
after that the aggregation of the derived fuzzy conclusions into one final conclusion. By
global inference the fuzzy rule base, presented by fuzzy relations, is first transformed
into one fuzzy relation by use of aggregation operatof.-implications are used, there
is no difference in the results obtained by local and global inference, because disjunction
is used as aggregation operator. If fuzzy implications based on classic implications are
used, differences in results occur. Local inference gives fuzzy conclusions which carry
less information than the fuzzy conclusions derived by global inference.

Deriving fuzzy conclusions from the fuzzy rule base by the usé aform and the
above-mentionettnorms has been performed for nine examples (Nikolic, 2002). In the
first example, the fuzzy rule base is simple (one initial fact and one fuzzy rule), and in
each following example the fuzzy rule base is more complex. Table 1 reviews these nine
examples. The fuzzy set$; and B; are defined on the séf = {z1,z2,23} and are
given in the third column of Table 1.

Note. The given fuzzy sets até(a, az, az) and B(by, be, bs). It will be considered
that the fuzzy sedl is “wider” than the fuzzy seB if itis a; > b, for everyi € {1, 2,3}

(if for everyi € {1, 2, 3} refers to the equality, then the fuzzy setsand B are equal).
The fuzzy setB will be considered fiarrower” than the fuzzy setl.

Table 2 reviews the fuzzy conclusions derived from the uséxef Tp, T, and H-
norm. It can be noticed that the fuzzy conclusions derived from the ugg;afiorm are
wider than the fuzzy conclusions derived fBs-norm, whereas the fuzzy conclusions
derived from the use df>-norm are wider than the fuzzy conclusions derived from the
use ofT',-norm. The fuzzy conclusions derived frafh-norm are narrower than the ones
derived from the use d¢f,,-norm and wider than fuzzy conclusions derived from the use
of T',-norms. When compared to the fuzzy conclusions derived from the Uge-nbrm,
the fuzzy conclusions withi/ -norm can be wider (2, 4, 5, 6, 7, 9) or narrower (1, 3, 8).

4. Comparison of Finite Fuzzy Setsby Use of Coherence Measure

To define the similarities between the two finite fuzzy sets, a coherence measure was
used, based on the maximum distance between the elements of the two fuzzy sets. The
summary of the definitions and the characteristics of coherence measures is given below
(Royo and Verdegay, 2000).

DEFINITION 3. LetX = {z1,...,z,,} be a finite set and/ (X), the set of fuzzy sets
on X, we say that cone P/(X) x P/(X) — [0, 1] is acoherence measure on P/ (X)
iff holds:
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Fuzzy rule base

Ordinal Fuzzy rule base Fuzzy sets
number
1 Initial fact: AO A0(0.6,1,0.3)
Rule 1: A1— B1 A1(1,0.7,0.5)
Fuzzy conclusion: B. B1(0.3,0.8,1)
2 Initial fact: AO A0(0.1,0.2,0.3)
Rule 1: notAl- B1 A1(0.4,0.3,0.5)
Fuzzy conclusion: B. B1(0.7,0.2,0.1)
3 Initial facts: AO BO A0(0.1,0.2,0.3)
Rule 1: A1 AND A2— B1 A1(0.4,0.3,0.5)
Fuzzy conclusion: B B0(1,0.5,0) A2(0.2,0.4,0.8) B1(0.7,0.2,0.1)
4 Initial facts: A0 BO A0(0.1,0.2,0.3)
Rule 1: notA1 AND A2— B1 A1(0.4,0.3,0.5)
Fuzzy conclusion: B B0(1,0.5,0) A2(0.2,0.4,0.8) B1(0.7,0.2,0.1)
5 Initial facts: AO A0(0.6,1,0.3)
Rule 1: Al— Bl A1(1,0.7,0.5)
Rule 2: A2~ B2 B1(0.3,0.8,1)
Fuzzy conclusion: B A2(0.1,0.2,0.3) B2(0.4,0.5,0.6)
6 Initial facts: AO A0(0.6,1,0.3)
Rule 1: Al— Bl A1(1,0.7,0.5)
Rule 2: A2~ B2 B1(0.3,0.8,1)
Rule 3: A3— B3 A2(0.1,0.2,0.3)
Fuzzy conclusion: B B2(0.4,0.5,0.6) A3(0.7,0.3,0.5) B3(0.4,0.6,0.1)
7 Initial facts:AO BO A0(0.5,0.7,1)
Rule 1: notAl— B1 A1(0.6,0.4,0.5)
Rule 2: A1 AND A2 — B2 B1(1,0.2,0.4)
Rule 3: A3— B3 B0(0.4,0.7,0.2)
Fuzzy conclusion: B A2(0.9,0.8,0.3) B2(1,0.5,0.8)
A3(0.5,0.2,0.9) B3(0.4,1,0.8)
8 Initial facts: A0 BO A0(0.5,0.7,1)
Rule 1: A1 OR notA2— B1 A1(0.6,0.4,0.5)
Rule 2: notA1 AND A3— B2 B0(0.3,1,0.9)
Fuzzy conclusion: B A2(0.9,0.8,0.3) B1(1,0.2,0.4)
B2(1,0.5,0.8) A3(0.5,0.2,0.9)
9 Initial facts: AO A0(0.6,1,0.3)
Rule 1: A1— B1 A1(1,0.7,0.5)
Rule 2: A2— B2 B1(0.3,0.8,1)

Rule 3: A3— B3
Rule 4: Ad— B4
Fuzzy conclusion: B

A2(0.4,0.6,0.7)
B2(0.8,0.5,0.9)
A3(0.1,0.8,1) B3(0.8,0.2,0.3)
A4(0.9,0.2,0.9) B4(0.5,0.6,0.7)
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Table 2

Example T, norm Tp norm Ty, norm H norm
1 B (0.3,0.7,0.7) B(0.21, 0.56, 0.7) B(0, 0.5,0.7) B(0, 0.5, 0.7)
2 B (0.3,0.2,0.1) B(0.105, 0.03, 0.015) B(0, 0, 0) B(0.2, 0.2, 0.067)
3 B (0.3,0.2,0.1) B(0.021, 0.006, 0.003) B(0, 0, 0) B(0, 0, 0)
4 B (0.3,0.2,0.1) B(0.021, 0.006, 0.003) B(0, 0, 0) B(0.2, 0.2, 0.067)
5 B (0.3,0.7,0.7) B(0.21, 0.56, 0.7) B(0, 0.5, 0.7) B(0.267, 0.5, 0.7)
6 B (0.4,0.7,0.7) B(0.21, 0.56, 0.7) B(0, 0.5, 0.7) B(0.267, 0.566, 0.7)
7 B (0.6, 0.9, 0.8) B(0.5,0.9,0.72) B(0.5, 0.9, 0.7) B(0.567, 0.9, 0.767)
8 B (0.7,0.5, 0.6) B(0.815, 0.415, 0.515) B(1,0.2,0.4) B(0.633, 0.5, 0.501)
9 B (0.8,0.7,0.7) B(0.64, 0.56, 0.7) B(0.6, 0.5, 0.7) B(0.8,0.5,0.7)

C1. cohg A, B) = cohe(B, A),
C2.cohg A, B¢) = 1 — cohe(A, B),

C3.cohda, X) =0.

Lemma 3. Let cohe P/(X) x Pf(X) — [0, 1] be a coherence measure, then:
a) coheg A¢, B¢) = cohe(A, B);
b) cohe(@, @) = cohe(X, X) = 1;
c) If A*(x) = 0.5Vx, thenVA € Pf(X)cohe(4, A*) = 0.5.
Coherence measures are not monotonous.

Lemma4. Letcohe P/(X)x P/(X) — [0, 1] bea coherence measure. Then, it isnot

true that:

(1) VA,B,C,D e Pf(X)

ACB
cCD

} — cohe(A4, C) < cohe(B, D)

equally, it is not true either that:
(2) VA,B,C,D € Pf(X)

ACB
cCD

} — cohe(A, C) > cohe(B, D).

The following lemma presents the method of coherence measure construction star-
ting from metrics. Elements P/ (X) are mappings fronX to [0, 1], so that it can be

established directly isomorphisf (X) ~ [0, 1]™.
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Lemma5. Let X be a finite set of m elements, P/ (X) the set of fuzzy subsets on X, let
d: Pf(X)xzPf(X) — [0, 1] be a bounded metric defined by:

m 1/r
d(A, B) = (Zh(ai,bi)) . or>1.
i=1

Then starting from d, a coherence measure can be constructed as:

1+ d(A, B¢) — d(A, B)

B(A.B) = :

if and only if:
a)h(0,1) = (1/m),
b) h(a,1 —b) = h(1 — a,b) Va,b € [0,1].

The previous lemma also shows the existence of coherence measures. By applying
this lemma tor-metrics(r > 1) on Pf(X) = [0, 1]™, various coherence measures can
be obtained:

1 m 1/r
d(A,B) = <EZ|‘“ bi|7> .
=1

5. Comparison of Fuzzy Conclusions

For comparison of fuzzy conclusions derived from the fuzzy rule base given in the men-
tioned examples (Table 1), the coherence measurederived from the metrics is used:

d(A, B) = max |a; — bl (5)

I
and the formula

1+ d(A, B®) — d(A, B)

B(A.B) = . , ©)
where
cy _ b — b
d(A,BY) = [max la; — (1 — b;)] [max la; + b; — 1]. 7

The coherence measuysge,, is defined for every two corresponding fuzzy conclusions
from Table 2, which is derived from different norms, and whose measures are shown in
Table 3.

Table 3 presents means of derived coherence measures of fuzzy conclusions within
every two norms, and average measures of similarity for every two ngffps It is
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Table 3
Coherence measures of fuzzy conclusions

Tv;Tp TvyTp TvyH Tp;Tr TpyH T H
ey e e e o e
1 0.675 0.7 0.7 0.79 0.79 1
2 0.845 0.8 0.8665 0.94 0.874 0.8665
3 0.809 0.8 0.8 0.988 0.988 1
4 0.836 0.8 0.8865 0.952 0.868 0.8665
5 0.675 0.7 0.6165 0.79 0.7315 0.733
6 0.605 0.6 0.633 0.79 0.733 0.733
7 0.85 0.85 0.8835 0.89 0.8665 0.8665
8 0.7 0.7 0.617 0.8 0.633 0.633
9 0.64 0.6 0.7 0.67 0.64 0.6
3. | 0737 0727 0742 0845 07915 0.8109

evident that inequality applies:
BRE > B > BRI > BMI > BMP > ML, @®

Thus, the most similar are the fuzzy conclusions derived wiifinand 7, -norms,
while within H-norm are found fuzzy conclusions which are most similar to fuzzy con-
clusions derived withiri’,-norm, and then withirf’> andT»,-norm. According to (8),
there is a bigger similarity of fuzzy conclusions firnorm to the fuzzy conclusions for
all the threg-norms than the similarity of the fuzzy conclusions witHigy-norms to the
fuzzy conclusions withiff'> and7,-norm.

Defining the aver age measure of similarity of the norm to other norms
At this point, the average measure of similarity of one norm to the other norms is

defined:
1. Average measure of similarity @f,-norm to7Tp, Tr, and H-norm:

5 BMP 4 BML 4 gGMH () 737 4 ().727 + 0.742
T — =

3 3

=0.735.

2. Average measure of similarity @f--norm to7,, T, and H-norm:

GMP 4 BEL 4 BRI 0.737 4 0.845 + 0.7915
3 B 3

= 0.791.

Brp =
3. Average measure of similarity @f;, -norm to7T;, Tp and H-norm

ML 4 pPL 4 BLH () 797 + (.845 + 0.8109
ﬂTL — 67“00 + goo+ rTo + 3 + :0794
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4. Average measure of similarity éf-norm toT;, Tp, Tr-norm

pMPR 4 GPPR  BLE (0742 +0.7915 + 0.8109

o0

3 3

Bu = = (.7808.

Consequently, the following order of average measures of similarity applies:

ﬁTAI < ﬁH < BTP < ﬁTL' (9)

The smallest average measure of similarityig, of the T,-norm to other norms.
The average measure of similarity BF-norm to other normsj3y , is bigger thansr,, .
The biggest is the average measure of similasity of 7.-norm to other norms.

6. Conclusion

The similarity of fuzzy conclusions derived by the useffnorm with the fuzzy con-
clusions derived by use #fnorms is determined by the coherence measure of similarity.
In inequality (8), the order between means of coherence measures is defined within each
two norms. According to this inequality, the average measure of similarifi/ -oform
andT'.-norm is greater than the average measure of similarify wform andl’s-norm,
and the average measure of similarityffnorm andl'»-norm is greater than the average
measure of similarity off-norm andi’y;-norm. In other words, the fuzzy conclusions
derived by use off-norm are the most similar to the fuzzy conclusions derived from
Tr-norm, therl'»-norm and the least similarity is with the fuzzy conclusions derived by
the use ofl'y;-norm (Fig. 2).

The average measures of similarity/éfnorm with every individuat-norm (I'p, 17,
Tyy) are greater than the average measures of similarity,gfnorm with T'» or T -
norm (8). Thus, fuzzy conclusions obtained Hynorm are more similar to the fuzzy
conclusions derived by the use ‘Bf-norm than the fuzzy conclusions obtained by the
use ofTs-norm.

M

T

Fig. 2. Average measure of similarity for every two norms (Ni&ofl002).
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By forming the order between average measures of similarity of one norm with the
other norms (9) it was established that the average measure of similafftynofm with
Tp, Tr, andT),-norm is greater than the average measure of similari#jpfnorm with
Tp, T, andH-norm.

It should be underlined here that the research was performed on a small number of
examples, so that it has to be confirmed on a greater number of examples.
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H-loginiu normy palyginimas su kai kuriomist-normomis
Branka NIKOLIC, Petar HOTOMSKI

Straipsnyje pateiktas nerysii (angl. fuzzy) iSvad, gauti naudojant-normas irH-norma,
palyginimas.H-norma 1975 m. pasile vienas i$ straipsnio autariP. Hotomski.H-norma yra
nemonotonig, ot-normos, naudojamos nerySkiajame samprotavime, yra monetrieryskio-
sios iSvados buvo palygintos naudojant koherentiSkumarigtimas atliktas naudojant palyginus
mazai testini pavyzdzi (devynis). Jis parag] kad artimiausios nerySkiosioms iSvadoms, gautoms
pagal H-norma, buvo neryskiosios iSvados, gautos pagatnorma.



