INFORMATICA, 2004, \ol. 15, No. 1, 111-126 111
[0 2004Institute of Mathematics and Informatics, Vilnius

Soft IP Customisation Model Based on
Metaprogramming Techniques

Vytautas STUIKYS, Robertas DAMASEZIUS

Software Engineering Department, Kaunas University of Technology
Studeng 50, LT-3031 Kaunas, Lithuania
e-mail: vystu@if.ktu.It, damarobe @soften.ktu.lt

Received: June 2003

Abstract. We propose a layered Soft IP Customisation (SIPC) model for specifying and imple-
menting system-level soft IP design processes such as wrapping and customisation. The SIPC
model has three layers: (Bpecification Layefor specification of a customisation process us-

ing UML class diagrams, (Xpeneralisation Layefor representation of a customisation process
using the metaprogramming techniques, and3@peration Layefor generation of the customised

soft IP instances from metaspecifications. UML allows us to specify customisation of soft IPs at a
high level of abstraction. Metaprogramming allows us to manage variability in a domain, develop
generic domain components, and describe generation of customised component instances. The us-
age of the SIPC model eases and accelerates radaptation and integration of the pre-designed

soft IPs into new hardware designs.

Key words: soft IP design, reuse, customisation, metaprogramming, UML, generation.

1. Introduction

Ever-increasing complexity ddystems-on-Chif50C), combined together with the re-
guirements to shorten time-to-market and the need to reduce design costs force hardware
(HW) designers to reuse the pre-desighetetllectual Propertycomponents (IPs). The

term denotes an original component that was created by a human designer, is portable,
and can be used by other design&sft IPsare IPs that are described using a high-level

HW description language (HDL) such as VHDL, Verilog or SystemC. They are valuable
assets for their developers, providers and SoC designers.

Soft IP-based design raises importanceydtem-level design processssch as IP
customisation and wrapping, additionally Register Transfer LevgRTL) design pro-
cesses, which are concerned with IP design from scrateteségn process a series of
commonly used well-defined domain-specific actions and methods performed to achieve
a certain well-formulated design aim. Theedf system-level design processes is to pre-
pare soft IPs for reuse and integration into a larger HW system or SoC. Currently, HW
designers use system-level design processes only casually. However, their counterparts
in software (SW) engineering, thaesign pattern§Gammaet al., 1995) described us-
ing UML (Boochet al., 1998) diagrams, have attracted much more research and have

112 V. Stuikys, R. Damaseiiis

increased SW design quality and productivity. We hope that our research will contribute
in this area, too.

We implement system-level design processes using parameterisation-based and gen-
erative mechanisms provided by languages, which support the metaprogramming (MPG)
paradigm. In general, MPG allows raising the level of abstraction in design, thus en-
ables to achieve a great deal of flexibility and reusability. It opens wide capabilities for
implementing customisation and adaptation of the pre-designed soft IPs. Furthermore,
MPG allows implementing thenulti-dimensional separation of concer(@ssher and
Tarr, 2000) in soft IP design explicitly, thus proving comprehenbility, facilitating soft
IP evolution and reuse, as well as simplifying soft IP integration into new HW designs.
In the past, MPG has played a significanter@h creating first SW generating systems
such as compiler generators. We believe thatBfan also contribute to further increase
in HW design productivity, as it did in SW design. Another motivation for the increased
interest in the MPG systems is the effort to find an adequate response to the growth of
HW design complexity and requirements to increase quality of the designed systems.
The knowledge about MPG gained in research of the formal logic programming systems
(Sheard, 2001) can contribute to the solution of this problem. This paper continues our
previous research (Stuikgs al.,2002b) on the usage of MPG for soft IP design.

In order to tackle with ever-growing complexity of HW design domain, the re-
searchers usually propose high-level models that allow to better understanding the do-
main, describe design problems in an abstwast and implement design solutions using
a verified design methodology. To support system-level design processes in soft IP de-
sign, we present a layeré@bft IP CustomisatiofSIPC) model and its implementation
based on the MPG techniques. We argue that the built-in MPG capabilities of HDLS,
such agemplateqSystemC) ogenerics(VHDL) usually are not enough to implement
customisation. We suggest to apply theterogeneouMPG based on the usage of an
external metalanguage for parameterisation of HDL programs.

A contribution and novelty of this paper is as follows: (1) the SIPC model, a novel
concept for system-level soft IP design, (2) the soft IP customisation framework based on
the SIPC model, and (3) analysis of the MPG techniques used for soft IP design.

The paper is organised as follows. In 8ex 2, we review related research. In Sec-
tion 3, we explain the principles of MPG, describe the structure of the SIPC model, and
present the soft IP customisation framework based on the model. In Section 4, we present
the results of our case study. In Section 5, we evaluate our approach. Finally, we conclude
in Section 6.

2. Related Works

Soft IP reuse methodologies and models are discussed in numerous papers. For example,
Seepold (1999) focuses on the extension of existing methodologies and generalisation.
He considers the need for new innovative methodologies to drive IP reuse. Vermeulen
et al.(2000) propose a system-level IP reuse methodology. Designs are described in three

Soft IP Customisation Model Based on Metaprogramming Techniques 113

layers of operations, which allow structural and behavioural reuse. A reusable descrip-
tion consists of the combination of the entities at the three layers. Jaebalg1999)
propose developing the IP libraries usidgsign space layergnplemented on the top

of conventional reuse libraries. Each layerlisracterised by structural and behavioural
descriptions of IPs, design requirements and constraints. B@&tgéer(1998) present an
object-oriented model for IP reuse in HW design. The model has three laye8pdti-
fication layercaptures knowledge about a target system in terms of functional and struc-
tural requirements. (FHunction layercontains knowledge about the functional properties

of the domain. (3Architectural layerrepresents knowledge about possible implementa-
tions of system functions.

Several authors see the answer to the IP-based design problems in higher abstrac-
tion levels. For example, Cheet al. (1999) use higher-level design abstractions to au-
tomate the generation of error-prone design details thus allowing the designers to focus
on global architectural and functionalitiecisions. Zhu (2001) proposes a new RTL ab-
straction, called MetaRTL, which extends traditional HDLs and provides IP reuse at a
higher level of design. Meguerdichiabal. (2001) present an IP development approach,
which considers soft IP design and optimisation at a higher level than standard HDL
specifications. Mihaét al. (2002) present a methodology that allows mapping high-level
application models onto architectures while preserving the application model semantics.
The methodology allows for several abstrantiayers, thus givinghore design flexibility
and enabling exploration of a wide array of architectures.

Other papers deal with design of highly parametric soft IPs. Gaginal. (1999)
emphasise the need for parameterisation of soft IPs to achieve higher flexibility, cus-
tomisability, reusability, and propose thergmetric soft IP design methodology based
on VHDL Genericstatement. Agaésse and Lauréti99) claim that even the most fre-
quently used soft IPs, although they may impént a well-established standard, require
certain customisation to fit an application. Givargis and Vahid (2000) consider parameter-
isation of HW architectures in terms of povi@erformance/arearequirements. In another
paper, Givargis and Vahid (2002) discuss methods that support tuning of the parame-
terised SoC platforms for optimal SoC performance and power usage. The methods range
from simple parameter configuration to aggsiwe architectural transformations. Féh
al. (2001) present a parametric soft IP generation methodology, which allows customis-
ing processors with regard to the instruction set and data size by annotating the already
designed VHDL descriptions witbtommand-comments

Several authors investigate the problems of soft IP integration into SoC designs. For
example, Changt al.(1999) propose a platform-based approach for SoC design. A plat-
form is a family of architectures that satisfy et ®f architectural constraints imposed to
allow the reuse of HW and SW components. Sangiovanni—Vincentelli (2000) explores
methods for selecting families of SW and HWEhitectures that allow a substantial de-
sign reuse. The author also discusses some paradigms for embedded system design that
are likely to become the pillars of future tools and flows sucbrteogonalization of con-
cerns i.e., separation of various design aspects to allow effective exploration of alterna-
tive solutions. Zhanet al. (2001) focus on safe integration of soft IPs using XML-based

114 V. Stuikys, R. Damaseiiis

representation. Automation of this process allows speeding up the system design by using
the parameterised component libraries and design frameworks. Koch (2002) proposes an
environment for automatic integration ohameterised HW objects, which adhere to a
standard interface.

We summarise the related works as followkeTauthors emphasise the role of param-
eterisation, customisation and integration of the pre-designed soft IPs in HW design, and
seek for the higher levels of abstraction (dgsspace layers, languages, models, frame-
works, platforms), which should ensuregher design quality, productivity and reuse.
However, there is a lack of the systematipeoach and wider usage of MPG and genera-
tive techniques. To address these problems, we prese8ofh&? CustomisatiofSIPC)
model.

3. Soft IP Customization Model

The purpose of the SIPC model can be stated as followse developed, soft IP could

be reused with or without adaptation across the different application dom@iasapply

the SIPC model as a framework for developing soft IP generators, which allow us to
achieve the following. (1) Teepresentbasic domain functionality, (2) Texpressthe
commonalties and variations of a domain functionality, (3)afalysesoft IPs, (4) To
specifytheir customisation, and (5) Tgeneratethe customised target instances (sub-
systems) destined for further integration into higher-level HW systems.

We explain the SIPC model by describing (1) the usage of UML for specifying cus-
tomisation, (2) the usage of the MPG techniques for implementing generalisation and
generation, (3) describing the structure of the SIPC model layer by layer, and (4) present-
ing the soft IP customisation framework based on the SIPC model.

Selection of a specification language to specify customisation is a complex problem.
Here we must deal with several aspects as follows. (1) A specification language must
be a standard and widely known one in order to be understandable by a majority of the
designers and to ease communication betw##arent design team (2) Specification
must be abstract enough in order to be usable for a wide array of architectures and design
processes in the domain. (3) Availability of standard tools is a great advantage.

UML (Unified Modelling LanguaggBoochet al.,1998) is a high-level system speci-
fication and modelling language that satisfiesse requirements. the next sub-section,
we describe the usage of UML for specifying a customisation design process.

3.1. Specification of Customisation Process Using UML

UML combines the usage of the object-oriented design concepts for structural design
of a system usinglassdiagrams alongside with the behavioural system modiige
sequenceand activity diagrams). However, for black-box customisation, we use class
diagrams only.

We describe a customisation design process using UML class diagrams as follows.
(1) We specify an original soft IP. (2) We specify a target system, a part of which will

Soft IP Customisation Model Based on Metaprogramming Techniques 115

be the original soft IP. (3) The customisation process then can be definesasfar-
mationbetween an original component and a target system, and implemented using the
metaprogramming techniques.

To implement customisation, first, we must define a correspondence between the
object-oriented design concepts used in UML class diagrams and the HW design con-
cepts described using a domain language such as VHDL (see Fig. 1).

Elements of UML class diagrams aress#fiers, relationships and featur€assifiers
are interfaces and classes that deschhsic design blocks. We specify a VHI2htity
with anabstract clasginterfacg in UML. VHDL architectureis specified using alass.

Relationshipglescribe different types of connections and associations between clas-
sifiers. Thanheritancerelationship means that a VHDL entity inherits the 1/0 ports from
a base entity (there is no corresponding abstraction in VHDL). ddrapositionrela-
tionship describes composition of a system from the components and corresponds to a
VHDL port mapstatement. Theealisationrelationship corresponds to a VHDintity-
architecturepair.

Featuresdescribe parameters, attributeslanethods of classifiers. VHDL ports are
specified usingublic attributes(marked by %) of a class, and VHDL signals — using
private attributegmarked by ~-"). VHDL processesndproceduresare specified using
classmethods.

More details about specification of HW design processes using UML can be found in
(Damasewius and Stuikys, 2004). Once the customisation design process has been spec-
ified, a designer must describe how it can be implemented automatically. Our approach
deals with a general problem — the need afescription language for representing ar-
chitectures of the generic soft IP familigSapabilities of the standard HDLs for flexible
parameterisation, expressing variations in a design, as well as customising components

Interfacet ~~ VHDL entity corresponds to UML interface
ENTITY Interfacel 1S

+aftributes PORT (
~~ public attributes are used as VHDL ports

):
END Interfacel;

inheritance
ENTITY Interface2? 1§
PORT (
Interface? Class ——) fnterfaceZ inherits some ports from Interfacel
vetrioutes |1 - realization: - - - {-attributes END Interface2:
+methods() —- VHDL architecture corresponds to UML class

ARCHITECTURE Class OF InterfaceZ IS
-~ Class provides an implementation for Interface2

CUmpOSItIOﬂ —-- private attributes are used as VHDL signals
BEGIN
—- processes are described using UML class methods
method: PROCESS ()
interface3 BEGIN ... END PROCESS;
+aftributes —- Class contains component Interface3
Pl: Interface3 PORT MAP (...);
END Class;
(a) (b)

Fig. 1. Correspondence between UML and VHDL: a) UML class diagram, and b) VHDL abstractions.

116 V. Stuikys, R. Damaseiiis

to the context of their usage are usually not enough. We assume that these problems can
be solved in terms of MPG paradigm, which we consider in the following subsection.

3.2. Introduction to MPG Techniques

In general, MPG is a higher-level programming technique, which provides a means
for manipulating with domain programs alata. The main aim of MPG is to create a
metaspecificatiofaka metaprogram) — a specification of a program generator for a nar-
row application domain.

A metaspecification consists of a generic interface and a family of related domain
program instances encapsulated with their modification algorithm. A generic interface
describes the generic parameters of a metaspecification. The modification algorithm de-
scribes generation of a particular instance depending upon values of the generic parame-
ters. The modification algorithm ranges from simple metaconstructs sumeétasf (con-
ditional generation) andheta-for(repetitive generation) to th@phisticated application-
specific metapatterns, which are composed of the nested combinations of the simpler
metaconstructs. As a metaspecification is a concise representation of its instances, it can
be treated as a generic component, too.

We develop a metaspecification in severapst (1) Domain (usually represented by
one or more available domain component instances and requirements for their modifica-
tion) isanalysed(2) Modification concerns aiidentifiedandseparatedThese concerns
represent theariableaspects in a domain, whictependupon generic parameters and re-
quire the MPG techniques to be applied. (3) Modification concerns are expressed through
generic parameters ameplementedising the MPG techniques. (4) Modification con-
cerns arantegratedwith the fixeddomain aspects (i.e., domain functionality described
using a domain language), which amehogonalwith respect to the values of the generic
parameters. Such metaspecification describes commonalties and variations in a particular
application domain.

The MPG abstractions can be categorised into two large groups as followsothe
mogeneousandheterogeneousnes. The form and way how the concerns are separated
underscores the essential differences between these MPG paradigms. At the core of the
homogeneous MPG implicit separation of concerns. At the core of the heterogeneous
MPG isexplicit separation of concerns.

HeterogeneoudPG (Fig. 2) is based on the usage of two different languages in
the same metaspecification. The lower-level langudgméin languagpexpresses basic
domain functionality. The higher-level languagedtalanguagpeexpresses generalisation
and describes domain program modifications. Using a metalanguage as a higher-level
abstraction, the different domain language component instances are woven together and
make up a metaspecification. The metadiieation is then used as a set of instructions
for its environment (processor, compiler) to generate the specific component instances in
a domain language.

In homogeneous!PG (Fig. 3), we have two “different” subsets of the same language,
the lower-level §omain-orientefland higher-leveltemplate, generior metg ones, and

Soft IP Customisation Model Based on Metaprogramming Techniques 117

|
| . |
I |
Dianakn Langsage | Maodification | I
e —— | Mgorithm | - I
[Donsain | ! 1
] i ‘ =
| Algorithm Ml @ fets- B8
Ul speecificatinn | |
: 4= . Domain I
: : Frog rivm I
[] Tooerdmes || B —————————— | i

| Signalks
| Werapragramming Dosmain

—

Progprooreing {amain

Fig. 2. Framework of heterogeneous MPG.

Prozram : Cremeric
bemplate ;o dnehser

o |

epmmin

: Meta-
Dasngln- + ¢ | Abgorithm | | —
wr:'l:::‘.'rrﬂl + £l specification

v bxed | Interface
i Sigmals

Fig. 3. Framework of homogeneous MPG.

just one design environment. The domain-oriented subset expresses basic domain func-
tionality. The generic subset expresses generality in a domain. The decomposition of a
given language into the subsets and specifying the content for each subset are subtle
problems. Therefore, one can argue thatehsra thin line between programming and
homogeneous MPG. Especially, it is true with VHDL, because the language designers
have not explicitly defined which constructs are the higher-level ones. In our view, the
generic constructs in VHDL angackages, constants, generiagdif/for generatestate-

ments.

Application of the homogeneous MPG letques is hindered by the limited ex-
pressiveness of the domain language syntax. For example, the existing parameterisation
mechanisms in VHDL allow only changing the width of the I/O signals, but can not spec-
ify more complex modifications such as the inclusion/exclusion of the signals, the usage
of the different communication schemes, or inheritance. On the contrary, the heteroge-
neous MPG techniques are domain languagkependent and have virtually unlimited
capabilities for modifyig domain language code. Therefpwe argue that heteroge-
neous MPG is more suitable for customisation of soft IPs.

118 V. Stuikys, R. Damaseiiis

3.3. Structure of SIPC Model

We describe the structure of the SIPC model at three layersSggrification Layer

(2) Generalisation Layerand (3)Generation LayerWe illustrate the roles of the layers

by presenting a solution to a simple soft IP customisation problem: the automatic exten-
sion of soft IPs with control signallipck, enableandrese). This problem is trivial,
however, it has a wide application in HW design (see, elgck gating(Li et al.,2003),

input latchingandinput gating(Williams et al., 2000) techniques for low power design,
pipelining(Marinescu and Rinard, 2001) for efficiency) and allows us to demonstrate our
approach systematically.

3.3.1. Specification Layer

Specification Laye(Fig. 4) is dedicated to specifyingé customisation design process,
i.e., adaptation of soft IP to the needs of a particular designer and integration into the
designed HW system. The role of Specification Layer is (1aralyse(parsg a soft

IP, (2) tospecifyan application-specifi€ustomisation modéh a semi-formal way, and

(3) toimplementhe automatic extraction of the application-specific parameter values for
further customisation of soft IP.

Parsingis an application-specific domain ansily method that is concerned with au-
tomatic analysis of abstract domain representations — source code of domain language
programs. Parsing decomposes a domaiguage specification according to the domain
language syntax into aAbstract Syntax Tre@AST). AST then is used for extraction
of the application-specific domain information for further customisation. The aim is to
streamline selection of the context-depengmrameter values for metaspecifications.

We specify the Customisation model for given application using Ullss diagrams
as described in sub-section 3.1. In Fig. 5, we present the specification for our soft IP cus-
tomisation problem and explain it below as follows. AnterfaceSoftIP describes the
VHDL entity of the original soft IP, which can be extended by the additional 1/0 ports
usinginheritance Therealisationrelationship describes the implementation (VHB:=
chitecturg of the corresponding interface (entity). The functionality is specified using
class methods (VHDIprocessesr procedura). Theaggregatiorrelationship shows that

Frawn appmiication eauim

AR AT LT TR

I CIT AT H AT

% H H i e e = e
 msomizaetinn [N T "f' A

midel

-
T Cigmeradlooniaan Layee

I Parpmeier
1
asft I HIL, Auin | Faramictes e
parser e extrscien T Cremeraion Laper
—

Fig. 4. Structure of Specification Layer.

Soft IP Customisation Model Based on Metaprogramming Techniques 119

[PModel _____{:._:__ SR

ResstiF

+CLK: in std_logic +RET: in std_logic

B K -,
' '

ClockiPModel | [ResetPhiodal | [EnableiPhodel

#pro 1 CLK) #proce: iSEEN]

t t

Fig. 5. Customisation model for extding soft IPs with control signals.

#Fproce

the additional functionality, which implements, e.g., clocking, is composed with the orig-
inal soft IP using VHDLport mapstatement. The presented customisation model is an
example of application of &/rapperdesign pattern, which we examined in (Damase-
viciuset al.,2003).

3.3.2. Generalisation Layer
Generalisation Laye(Fig. 6) is dedicated for representing theneric component#\
generic component is a metaspecification, which uses the parameterisation-based mech-
anisms to encapsulate a family of the related domain component instances (e.g., generic
gate, generic ALU, etc.). By the family, we mearcollection of the different instances,
which have similar functionality, but differergplication- or tekhnology-oriented) char-
acteristics.

The domain component instance is a structure that consistsesface which is
used for communicating with other instances, &mactionality, which implements the
functional requirements and is describedngsstandard HDL abstractions. Note that in

e Helerogeneous i]\/“)(l Homogeneous MPG
ML. Interface .
Package as Interface
» Generic Interface
To generation
layer R Generic T
Functionality
)
7Y 4
VHDL Instance
Entity
Architecture
'y
Requirements for
generalization From application domain

Fig. 6. Structure of Generalisation Layer.

120 V. Stuikys, R. Damaseiiis

$
"Specify VHDL entity ports for IP:™ {} ports :=
"Add a clock signal to the entity?" {0, 1} add cl :
"Add a reset signal to the entity?" {0, 1} add rs :
"Add an enable signal to the entity?™ {0, 1} add en :

#od
=3
~ 0
=}
o
~

ENTITY customized IP IS
PORT (
@if[add cl = 1, {
CLK: in STD LOGIC;}]
@if[add rs = 1, {
RST: in STD_LOGIC;}]
@if[add en = 1, {
ENA: in STD _LOGIC;}1]
Qif[ports neq {none}, {
@sub [ports]
NIRE
END customized IP;

Fig. 7. Example of PROMOL metaspecificatiasr £xtending soft IPs with control signals.

VHDL, these parts of the component are cakedity andarchitecture respectively.

Generic components can be describesggieneric abstractions of a standard HDL
(homogeneoulIPG) or an external metalanguade{erogeneouBIPG). We can use a
dedicated (e.g., pre-processing, macro) language or a common programming language,
such as Java or C++, as a metalanguage. The generic interface serves for representing the
generic parameters of a generic component. To demonstrate heterogeneous MPG, we use
Open PROMOL (Stuikyst al.,2002a) as an external metalanguage. In Fig. 7, we present
a PROMOL metaspecification, it demonstrates the usagewéta-if (@f function) to
conditionally include the I/O ports into the VHDL entity. Note that thesymbols denote
the generic interface of a PROMOL metaspeseifion. The value of the generic parameter
portsis usually not specified manually by a designer, but rather extracted automatically
from the soft IP description.

3.3.3. Generation Layer

Generation Laye(Fig. 8) is dedicated to processing the generic components (metaspec-
ifications) and generating the customised instances of domain components. A designer
or an external tool specifies the particular instances through selection of the generic pa-

Ao Crevtierufizanes Lorer Frenss s venmizailivew Loves

l Poromefer

sz ed
FTTEPAT AL

Interince

| Specilicaibon body
| | Dmain Languaps
| + Wlerslnmgiags)
L

I

! Metalanguage
I| \ ST T
|

|

Fig. 8. Structure of Generation Layer.

Soft IP Customisation Model Based on Metaprogramming Techniques 121

ARCHITECTURE model OF alu clk IS
SIGNAL a_clk: std_logic _vector (31 downto 0);
SIGNAL b_clk: std _logic_vector (31 downto 0);
SIGNAL op_clk: std logic vector (3 downto 0);
SIGNAL ci_clk, mode clk: std logic;
BEGIN
pl: alu PORT MAP (a_clk, b _clk, op_clk,
ci_clk, mode_clk, cout, ovf, z);
processl: PROCESS (clk)
BEGIN
if (clk'event and CLK='l') THEN
a_clk <= a;
b_clk <= b;
op_clk <= op;
ci _clk <= ci;
mode_clk <= mode;
END IF;
END PROCESS;
END model;

Fig. 9. Example of generated VHDL code.

rameter values. The generation process is performed automatically using a metalanguage
processor. Itis important to emphasise that the conventional compilers of general-purpose
programming languages, such as C++ and Java, can be used for implementing the gener-
ation process, because these languages can be used as metalanguages, too.

Generation Layer does not introduce anwrdomain functionality, but rather pro-
vides a means for handling the variations encapsulated in the generic components and
performing the customisation of soft IPs. Geation Layer uses the MPG abstractions,
which allow implementing th@arameterisation mechanispeand provide the capabil-
ities for adaptation and customisation of the soft IPs to the specific requirements of a
designer.

In Fig. 9, we present the generated VHDL architecture, which adds the clocking logic
to the third-party soft IP. The functionality of the clock logic is described using a VHDL
procesgprocessland the soft IP is inserted using a VHPlort mapstatement.

In the next subsection, we present the soft IP design framework based on the SIPC
model.

3.4. Soft IP Customisation Framework Based on SIPC Model

Suppose that a system designer retrieves a third-party soft IP, analyses it, and discovers
that this soft IP needs some customisation in order to integrate it successfully into a
particular HW system. Then the designer needs to perform the following actions:

(1) Analysethe domain problemformulatethe requirements for customisation, and
specifythe customisation model using UML class diagrams.

(2) Analysethe available domain component instandesmulatethe requirements
for generalisation, andevelopthe metaspecifications ing the selected metalan-
guage.

(3) Analysethe soft IP using a HDL parser, amdtractthe generic parameter values
for the metaspecifications.

122 V. Stuikys, R. Damaseiiis

Desrmin Regurirenrenty for
ey F LT T

1
¥ (h [UFRRIETET

Specification [vames
=uft 11 Layer 1
S
| Requirsneno for (3 “t:wm[hl" H-] .
geweraiizotinm —L— ANEr]
¥

Ihrenian Cienernliztion
analpis ™ Layer

IR PR TR R T E

Fig. 10. Design flow of the proposed methodology.

(4) Generatdhe customised soft IP instances from the metaspecifications using a met-
alanguage processor.

In the SIPC model, the designer performs the design steps (1) & (2) manually. The

design steps (3) & (4) are performed automatically. Design flow of the proposed method-
ology is summarised in Fig. 10.

In the next section, we present the results of our case study.

4. Results of Case Study

In our case study, we have used a variety of public-domain soft IPs: 8b ALU from i8051
micro-controller (Givargis, 2000), 32b ALU from DLX processor (Gumm, 1995), 32b
Chang ALU (Chang, 1999), and 32b Booth Itiplier (Booth, 2001). Synthesis results
(Synopsys tools; CMOS 0.35 um) for the original soft IPs and generated components are
presented in Table 1.

Synthesis results show an average increase in chip area of about 38% forckmtted
logic, 11% for adde@nablelogic, and 4% for adderkesetlogic.

Table 1
Synthesis results

Area, Area, Increase Area, Increase Area,
Soft IP Cells Cells ' cells ' cells

0, 0,
(IP) (IP+clock) % (IP+enable) % (IP+reset) %

Increase,

8bi8051 ALU 2265 2789 23.1 2415 6.6 - -
32b DLX 2280 3164 38.8 2625 151 - -
ALU

32b Chang ALU 1945 3044 56.5 2295 18.0 2085 7.2

32b Booth multiplier 7859 10370 32.0 8179 4.1 7942 11

Soft IP Customisation Model Based on Metaprogramming Techniques 123
5. Evaluation and Discussion

Theproblemsof implementing the SIPC model are as follows: (1) analysis of domain ap-
plications and extraction of the customisation model for describing customisation of soft
IPs, (2) selection of a metalanguage and generalisation of domain objects, and (3) quali-
fication of the customised soft IPs. The key foe SIPC model is generic representation
introduced by MPG. It simplifies the control of variations, extends reusability and adds
an extra value to the soft IPs.

HomogeneousMPG capabilities of the standard HDLs allow implementing the
parameterisation-based structures of the SIPC model only partially. However, these capa-
bilities arenot enough because of (1) the lack oiflglity for describing a wide range
of modifications required for adaptation to thariety of functional requirements, (2) the
limitations of the synthesis tools, (3) the over-generalisation problem, (4) the lack of the
explicit separation of concerns when using a single language.

We have suggested to use theterogeneousIPG techniques introduced by the ab-
stractions of an external metalanguage. The main advantages are as follows: (1) inde-
pendence from a HDL, (2) flexibility in implementing generalisation and modification,
(3) adaptability to the synthesis tools and &trtechnology, (4) no over-generalisation
(from the user’s viewpoint), (5) the explicit separation of concerns.

The strengths of our approach are as follows. (1) The usage of UML allows us to
specifythe customisation problem at a high level of abstraction. (2) The usage of MPG
allows us tomanage variabilityin a domain, as well as tgeneratethe customised soft
IP instancesutomatically

The limitations of our approach are as follows. (1) The UML model does not reflect
the physical constrainteimposed on soft IPs. (2) The metaspecifications so fadavel-
oped manuallythus requiring considerable programming efforts. (3) Vakdation of
the metaspecifications is much more difficult than the validation of the soft IPs.

These limitations could be overcome in a variety of ways. For example, physical con-
straints can be introduced by adopting extensions of UML for real-time and embedded
systems. Development of metaspecificatioosld be simplified by generating (at least)
parts of them automatically. Further research is needed to explore these possible solu-
tions.

6. Conclusions and Future Work

Increasing complexity of HW design requires adoption of the new system-level design
methods, which deal with automated customisation and integration of the pre-designed
soft IPs. We have proposed a no@&lft IP Customisation (SIPC) Modevhich is based
on the usage of UML and the MPG techniques, and allows implementing application-
specific customisations of the soft IPs. The SIPC model allows achieving higher reusabil-
ity and adaptability of the pre-designed soft IPs.

Future work will focus on overcoming the limitations of our approach, as well as on
research and implementation of the customisation models for other application domains
such as embedded systems.

124 V. Stuikys, R. Damaseiiis

Acknowledgements

We thank the anonymous reviewers for their comments that allow us to improve the paper.

References

Agaésse, J.F., and B. Laurent (1999). Virtuaingmnents application and customization.Froc. of Design,
Automation and Test in Europe (DATE’'199@p. 726-727.

Booch, G., I. Jacobson, J. Rumbaugh and J. Rumbaugh (1B88)Unified Modeling Language User Guide.
Addison—-Wesley.

Booth (2001)ht t p: / / ww. cs. unbc. edu/ hel p/ VHDL/ sanpl es/

Bottger, J., K. Agsteiner, D. Monjau and S. Schul2898). An object-oriented mober specification, proto-
typing, implementation and reuse.Pnoc. of Design, Automation and Test in Europe (DATE 1988)303—
309.

Chang, H., L. Cooke, M. Hunt, G. Martin, A. Mc-Nelly and L. Todd (199Syrviving the SoC Revolution: A
Guide to Platform-Based DesigKluwer Academic Publishers, Norwell.

Chang, K.C. (1997)Digital Design and Modeling with VHDL and SynthediEEE Computer Society Press,
The Institute of Electrical and Electronic Engineers, Inc., Los Alamitos, CA.

Chou, P, R. Ortega, K. Hines, K. Partridge and G. Baioi(1999). IPChinook: an integrated ip-based design
framework for distributed embedded systemsPHoc. of 36th Design Automation Conference (DAC’'1999)
pp. 44-49.

Damasewius, R., G. Majauskas and V. Stuikys (2003). Apption of design patterns for hardware design. In
Proc. of 40th Design Automation Conference (DAC 2008) 48-53.

Damasewius, R., and V. Stuikys (2004). Application of UMor hardware design based on design process
model. InProc. of Asia South Pacific Design Automation Conference (ASP-DAC 200444—-249

Fin, A., F. Fummi and G. Perbellini (2001). Soft-cergeneration by instruction set analysisFroc. of 14th
Int. Symposium on System Synthesis (ISSP1P27-232.

Gamma, E., R. Helm, R. Johnson and J. Vlissides (1998sign Patterns: Elements of Reusable Object-
Oriented SoftwareAddison—Wesley.

Garino, P., G. Cesana, M. Paolini, M. Turola and ®rcélli (1999). Experiences and issues in developing
re-usable IP soft cores for the new millenium ICT productdPi1999 Europe

Givargis, T. (2000). Intel 8051 Microcontroller.
http://ww. cs. ucr. edu/ ~dal ton/i 8051/i 8051syn/

Givargis, T., and F. Vahid (2000). Parameterized system desigRrdo. of 8th Int. Workshop on Hard-
ware/Software Codesign (CODES’200Q)p. 98-102.

Givargis, T., and F. Vahid (2002). Platune: a tumiramework for system-on-a-chip platforniEEE Transac-
tions on Computer Aided Desigh1(11).

Gumm, M. (1995). DLX Processor.
ftp://ftp.informatik.uni-stuttgart.de/ pub/vhdl/vlsi_course/vhdl _src/

Jacome, M.J., H.P. Peixoto, A. Royo and J.C. Lopk90). The design space layer: supporting early design
space exploration for core-based design®roc. of Design, Automation and Test in Europe (DATE'1999)
pp. 676-683.

Koch, A. (2002). Compilation for adaptive computing ®ms using complex parameterized hardware objects.
Journal of Supercomputin@l, 179-190.

Li, H., S. Bhunia, Y. Chen, T.N. Vijaykumar and K. R@®2003). Deterministic clock gating for micropro-
cessor power reduction. IAroc. of the 9th Int. Symposium on Higlerformance Computer Architecture
(HPCA'03). pp. 113-122.

Marinescu, M.-C., and M. Rinard (2001). High-level dyesis of pipelined circuits from modular queue-based
specificationsTransactions of the Institute of Electronics, Information, and Communication Engineers (IE-
ICE), E84-A(11), 2655-2664.

Meguerdichian, S., F. Koushanfar, A. Mogre, D. Petrda and M. Potkonjak (2001). MetaCores: design and
optimization techniques. IRroc. of 38th Design Automation Conference (DAC'2004p. 585-590.

Soft IP Customisation Model Based on Metaprogramming Techniques 125

Mihal, A., C. Kulkarni, C. Sauer, Kvissers, M. Moskewicz, M. Tsai, N. Shah, S. Weber, Y. Jin, K. Keutzer and
S. Malik (2002). A disciplined approach to thewklopment of architectural platform&EEE Design and
Test of Computerd 9, 2-12.

Ossher, H., and P. Tarr (2000). Multi-dimensional sapan of concerns and the hyperspace approach. In M.
Aksit (Ed.), Software Architectures and Component Technal&dywer Academic Publishers, Dordrecht.

Sangiovanni-Vincentelli, A. (2000). Platformd®d design: a path to efficient design re-u&®ec. of the First
Int. Symposium on Quality of Electronic Design (ISQED 2000) 209-210.

Seepold, R. (1999). Reuse of IP and virtual component®rte. of Design, Automation and Test in Europe
(DATE’1999)

Sheard, T. (2001). Accomplishments ande@agh challenges in meta-programming.2imd Int. Workshop
on Semantics, Applicatiorand Implementation of Program Generation (SAIG'2001), LN@S. 2196.
Springer. pp. 2—44.

Stuikys, V., R. Dama3ebius and G. Ziberkas (2002a). Open PROM@h experimental language for domain
program modification. In A. Mignotte, E. Villar and L. Horobin (EdsSystem on Chip Design Languages
Kluwer Academic Publishers, Boston. pp. 235-246.

Stuikys, V., R. Damase¥ius, G. Ziberkas, and G. Majauskas (2002jt 8 design framework using metapro-
gramming techniques. In B. Kigjohann, K.H. (Kane) Kim, L. Klgijohann and A. Rettberg (EdsDesign
and Analysis of Distributed Embedded Systeaftiswer Academic Publishers, Boston. pp. 257-266.

Vermeulen, F., F. Catthoor, D. Verkest, and H. De Man (20B0)malized three-layer system-level reuse model
and methodology for embedded daaminated applications. IRroc. of Design, Automation and Test in
Europe (DATE’2000Q)pp. 92—98.

Williams, A.C., A.D. Brown, and M. Zwolinski (2000). Simultaneous optimisation of dynamic power, area and
delay in behavioural synthesi€E Proceedings — Computers and Digital Techniques1(6), 383-390.

Zhang, T., L. Benini and G. De Micheli (2001). Componsetection and matching for IP-based design. In
Proc. of Design, Automation and Test in Europe (DATE200p) 40—46.

Zhu, J. (2001). MetaRTL: raising the abstraction level of RTL desigrbe. of Design, Automation and Test
in Europe (DATE’2001) pp. 71-76.

V. Stuikys is currently a professor at Software Engering Department of Kaunas Uni-
versity of Technology, Kaunas, Lithuania. He received the PhD and doctor habilitatis
tittes from Kaunas University of Technology in 1970 and 2002, respectively. He is a
teacher and researcher as well as a lead¢he research group “Design Process Au-
tomation”. His research interests include software and hardware design methodologies,
IP reuse, component-based programmingtapegramming and program generation,
CAD systems and soft IP design. He has published more than 100 papers (more than 20
in recent years) in the area. He is an author of several books and a monograph.

R. DamaSevtius received the BSc degree in 1999 and the MSc degree (cum laude)
in 2001 both in informatics from Kaunas Unisity of Technology, Kaunas, Lithuania.
Currently he is an assistant at Software Egiring Departmental is pursuing the PhD
degree at Kaunas University of Technology. His research interests include metaprogram-
ming, software reuse, software generation and program transformation, as well as hard-
ware design with VHDL and SystemC. He has published more than 20 papers in the
area.

126 V. Stuikys, R. Damaseiiis

LankscCiy intelektualiosios nuosavyles komponent priderinimo
modelis, gristas metaprogramavimo metodais

Vytautas STUIKYS, Robertas DAMASEWIUS

Siame straipsnyje mesigbme lanksiy intelektualiosios nuosavgs komponent priderinimo
model, kuris yra skirtas sisteminio lygmens komponemtrojektavimo proces specifikavimui ir
realizavimui. Modelis yra sudarytas i$ trilygmeny. Specifikavimo lygmuo yra skirtas priderinimo
proceso specifikavimui, naudojant UML klasliagramas. Apibendrinimo lygmuo yra skirtas prid-
erinimo proceso atvaizdavimui, naudojant metaprogramavimo metodmsné lygmuo yra skir-
tas pridering komponeni egzemplionij automatiniam sukimui. UML leidZia specifikuoti kom-
poneny priderinima aukStame abstrakcijos lygmenyje. Metaprogramavimas leidZia valdyti vari-
antiSkuna srityje, kurti bendrinius sritiesdmponentus ir aprasyti priderinkomponeny egzem-
plioriy automatinio sultrimo procea. Sulomo komponent priderinimo modelio taikymas leidZia
palengvinti ir pagreitinti ankSau sukung intelektualiosios nuosaves komponent atkartojina,
adaptavina ir integravina i, naujas aparatines sistemas.

