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Abstract. We propose a layered Soft IP Customisation (SIPC) model for specifying and imple-
menting system-level soft IP design processes such as wrapping and customisation. The SIPC
model has three layers: (1)Specification Layerfor specification of a customisation process us-
ing UML class diagrams, (2)Generalisation Layerfor representation of a customisation process
using the metaprogramming techniques, and (3)Generation Layerfor generation of the customised
soft IP instances from metaspecifications. UML allows us to specify customisation of soft IPs at a
high level of abstraction. Metaprogramming allows us to manage variability in a domain, develop
generic domain components, and describe generation of customised component instances. The us-
age of the SIPC model eases and accelerates reuse,adaptation and integration of the pre-designed
soft IPs into new hardware designs.
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1. Introduction

Ever-increasing complexity ofSystems-on-Chip(SoC), combined together with the re-
quirements to shorten time-to-market and the need to reduce design costs force hardware
(HW) designers to reuse the pre-designedIntellectual Propertycomponents (IPs). The
term denotes an original component that was created by a human designer, is portable,
and can be used by other designers.Soft IPsare IPs that are described using a high-level
HW description language (HDL) such as VHDL, Verilog or SystemC. They are valuable
assets for their developers, providers and SoC designers.

Soft IP-based design raises importance ofsystem-level design processes, such as IP
customisation and wrapping, additionally toRegister Transfer Level(RTL) design pro-
cesses, which are concerned with IP design from scratch. Adesign processis a series of
commonly used well-defined domain-specific actions and methods performed to achieve
a certain well-formulated design aim. The role of system-level design processes is to pre-
pare soft IPs for reuse and integration into a larger HW system or SoC. Currently, HW
designers use system-level design processes only casually. However, their counterparts
in software (SW) engineering, thedesign patterns(Gammaet al., 1995) described us-
ing UML (Booch et al., 1998) diagrams, have attracted much more research and have
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increased SW design quality and productivity. We hope that our research will contribute
in this area, too.

We implement system-level design processes using parameterisation-based and gen-
erative mechanisms provided by languages, which support the metaprogramming (MPG)
paradigm. In general, MPG allows raising the level of abstraction in design, thus en-
ables to achieve a great deal of flexibility and reusability. It opens wide capabilities for
implementing customisation and adaptation of the pre-designed soft IPs. Furthermore,
MPG allows implementing themulti-dimensional separation of concerns(Ossher and
Tarr, 2000) in soft IP design explicitly, thus improving comprehensibility, facilitating soft
IP evolution and reuse, as well as simplifying soft IP integration into new HW designs.
In the past, MPG has played a significant role in creating first SW generating systems
such as compiler generators. We believe that MPG can also contribute to further increase
in HW design productivity, as it did in SW design. Another motivation for the increased
interest in the MPG systems is the effort to find an adequate response to the growth of
HW design complexity and requirements to increase quality of the designed systems.
The knowledge about MPG gained in research of the formal logic programming systems
(Sheard, 2001) can contribute to the solution of this problem. This paper continues our
previous research (Štuikyset al.,2002b) on the usage of MPG for soft IP design.

In order to tackle with ever-growing complexity of HW design domain, the re-
searchers usually propose high-level models that allow to better understanding the do-
main, describe design problems in an abstractway and implement design solutions using
a verified design methodology. To support system-level design processes in soft IP de-
sign, we present a layeredSoft IP Customisation(SIPC) model and its implementation
based on the MPG techniques. We argue that the built-in MPG capabilities of HDLs,
such astemplates(SystemC) orgenerics(VHDL) usually are not enough to implement
customisation. We suggest to apply theheterogeneousMPG based on the usage of an
external metalanguage for parameterisation of HDL programs.

A contribution and novelty of this paper is as follows: (1) the SIPC model, a novel
concept for system-level soft IP design, (2) the soft IP customisation framework based on
the SIPC model, and (3) analysis of the MPG techniques used for soft IP design.

The paper is organised as follows. In Section 2, we review related research. In Sec-
tion 3, we explain the principles of MPG, describe the structure of the SIPC model, and
present the soft IP customisation framework based on the model. In Section 4, we present
the results of our case study. In Section 5, we evaluate our approach. Finally, we conclude
in Section 6.

2. Related Works

Soft IP reuse methodologies and models are discussed in numerous papers. For example,
Seepold (1999) focuses on the extension of existing methodologies and generalisation.
He considers the need for new innovative methodologies to drive IP reuse. Vermeulen
et al.(2000) propose a system-level IP reuse methodology. Designs are described in three
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layers of operations, which allow structural and behavioural reuse. A reusable descrip-
tion consists of the combination of the entities at the three layers. Jacomeet al. (1999)
propose developing the IP libraries usingdesign space layersimplemented on the top
of conventional reuse libraries. Each layer is characterised by structural and behavioural
descriptions of IPs, design requirements and constraints. Böttgeret al. (1998) present an
object-oriented model for IP reuse in HW design. The model has three layers. (1)Speci-
fication layercaptures knowledge about a target system in terms of functional and struc-
tural requirements. (2)Function layercontains knowledge about the functional properties
of the domain. (3)Architectural layerrepresents knowledge about possible implementa-
tions of system functions.

Several authors see the answer to the IP-based design problems in higher abstrac-
tion levels. For example, Chouet al. (1999) use higher-level design abstractions to au-
tomate the generation of error-prone design details thus allowing the designers to focus
on global architectural and functionalitydecisions. Zhu (2001) proposes a new RTL ab-
straction, called MetaRTL, which extends traditional HDLs and provides IP reuse at a
higher level of design. Meguerdichianet al. (2001) present an IP development approach,
which considers soft IP design and optimisation at a higher level than standard HDL
specifications. Mihalet al. (2002) present a methodology that allows mapping high-level
application models onto architectures while preserving the application model semantics.
The methodology allows for several abstraction layers, thus givingmore design flexibility
and enabling exploration of a wide array of architectures.

Other papers deal with design of highly parametric soft IPs. Garinoet al. (1999)
emphasise the need for parameterisation of soft IPs to achieve higher flexibility, cus-
tomisability, reusability, and propose the parametric soft IP design methodology based
on VHDL Genericstatement. Agaësse and Laurent(1999) claim that even the most fre-
quently used soft IPs, although they may implement a well-established standard, require
certain customisation to fit an application. Givargis and Vahid (2000) consider parameter-
isation of HW architectures in terms of power/performance/area requirements. In another
paper, Givargis and Vahid (2002) discuss methods that support tuning of the parame-
terised SoC platforms for optimal SoC performance and power usage. The methods range
from simple parameter configuration to aggressive architectural transformations. Finet
al. (2001) present a parametric soft IP generation methodology, which allows customis-
ing processors with regard to the instruction set and data size by annotating the already
designed VHDL descriptions withcommand-comments.

Several authors investigate the problems of soft IP integration into SoC designs. For
example, Changet al.(1999) propose a platform-based approach for SoC design. A plat-
form is a family of architectures that satisfy a set of architectural constraints imposed to
allow the reuse of HW and SW components. Sangiovanni–Vincentelli (2000) explores
methods for selecting families of SW and HW architectures that allow a substantial de-
sign reuse. The author also discusses some paradigms for embedded system design that
are likely to become the pillars of future tools and flows such asorthogonalization of con-
cerns, i.e., separation of various design aspects to allow effective exploration of alterna-
tive solutions. Zhanget al. (2001) focus on safe integration of soft IPs using XML-based
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representation. Automation of this process allows speeding up the system design by using
the parameterised component libraries and design frameworks. Koch (2002) proposes an
environment for automatic integration of parameterised HW objects, which adhere to a
standard interface.

We summarise the related works as follows. The authors emphasise the role of param-
eterisation, customisation and integration of the pre-designed soft IPs in HW design, and
seek for the higher levels of abstraction (design space layers, languages, models, frame-
works, platforms), which should ensure higher design quality, productivity and reuse.
However, there is a lack of the systematic approach and wider usage of MPG and genera-
tive techniques. To address these problems, we present theSoft IP Customisation(SIPC)
model.

3. Soft IP Customization Model

The purpose of the SIPC model can be stated as follows:once developed, soft IP could
be reused with or without adaptation across the different application domains. We apply
the SIPC model as a framework for developing soft IP generators, which allow us to
achieve the following. (1) Torepresentbasic domain functionality, (2) Toexpressthe
commonalties and variations of a domain functionality, (3) Toanalysesoft IPs, (4) To
specifytheir customisation, and (5) Togeneratethe customised target instances (sub-
systems) destined for further integration into higher-level HW systems.

We explain the SIPC model by describing (1) the usage of UML for specifying cus-
tomisation, (2) the usage of the MPG techniques for implementing generalisation and
generation, (3) describing the structure of the SIPC model layer by layer, and (4) present-
ing the soft IP customisation framework based on the SIPC model.

Selection of a specification language to specify customisation is a complex problem.
Here we must deal with several aspects as follows. (1) A specification language must
be a standard and widely known one in order to be understandable by a majority of the
designers and to ease communication betweendifferent design teams. (2) Specification
must be abstract enough in order to be usable for a wide array of architectures and design
processes in the domain. (3) Availability of standard tools is a great advantage.

UML (Unified Modelling Language) (Boochet al.,1998) is a high-level system speci-
fication and modelling language that satisfies these requirements. Inthe next sub-section,
we describe the usage of UML for specifying a customisation design process.

3.1. Specification of Customisation Process Using UML

UML combines the usage of the object-oriented design concepts for structural design
of a system usingclassdiagrams alongside with the behavioural system models (state,
sequenceand activity diagrams). However, for black-box customisation, we use class
diagrams only.

We describe a customisation design process using UML class diagrams as follows.
(1) We specify an original soft IP. (2) We specify a target system, a part of which will



Soft IP Customisation Model Based on Metaprogramming Techniques 115

be the original soft IP. (3) The customisation process then can be defined as atransfor-
mationbetween an original component and a target system, and implemented using the
metaprogramming techniques.

To implement customisation, first, we must define a correspondence between the
object-oriented design concepts used in UML class diagrams and the HW design con-
cepts described using a domain language such as VHDL (see Fig. 1).

Elements of UML class diagrams are classifiers, relationships and features.Classifiers
are interfaces and classes that describe basic design blocks. We specify a VHDLentity
with anabstract class(interface) in UML. VHDL architectureis specified using aclass.

Relationshipsdescribe different types of connections and associations between clas-
sifiers. Theinheritancerelationship means that a VHDL entity inherits the I/O ports from
a base entity (there is no corresponding abstraction in VHDL). Thecompositionrela-
tionship describes composition of a system from the components and corresponds to a
VHDL port mapstatement. Therealisationrelationship corresponds to a VHDLentity-
architecturepair.

Featuresdescribe parameters, attributes and methods of classifiers. VHDL ports are
specified usingpublic attributes(marked by ’+’) of a class, and VHDL signals – using
private attributes(marked by ’−’). VHDL processesandproceduresare specified using
classmethods.

More details about specification of HW design processes using UML can be found in
(Damaševǐcius and Štuikys, 2004). Once the customisation design process has been spec-
ified, a designer must describe how it can be implemented automatically. Our approach
deals with a general problem – the need of adescription language for representing ar-
chitectures of the generic soft IP families. Capabilities of the standard HDLs for flexible
parameterisation, expressing variations in a design, as well as customising components

Fig. 1. Correspondence between UML and VHDL: a) UML class diagram, and b) VHDL abstractions.
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to the context of their usage are usually not enough. We assume that these problems can
be solved in terms of MPG paradigm, which we consider in the following subsection.

3.2. Introduction to MPG Techniques

In general, MPG is a higher-level programming technique, which provides a means
for manipulating with domain programs as data. The main aim of MPG is to create a
metaspecification(aka metaprogram) – a specification of a program generator for a nar-
row application domain.

A metaspecification consists of a generic interface and a family of related domain
program instances encapsulated with their modification algorithm. A generic interface
describes the generic parameters of a metaspecification. The modification algorithm de-
scribes generation of a particular instance depending upon values of the generic parame-
ters. The modification algorithm ranges from simple metaconstructs such asmeta-if (con-
ditional generation) andmeta-for(repetitive generation) to the sophisticated application-
specific metapatterns, which are composed of the nested combinations of the simpler
metaconstructs. As a metaspecification is a concise representation of its instances, it can
be treated as a generic component, too.

We develop a metaspecification in several steps: (1) Domain (usually represented by
one or more available domain component instances and requirements for their modifica-
tion) isanalysed. (2) Modification concerns areidentifiedandseparated. These concerns
represent thevariableaspects in a domain, whichdependupon generic parameters and re-
quire the MPG techniques to be applied. (3) Modification concerns are expressed through
generic parameters andimplementedusing the MPG techniques. (4) Modification con-
cerns areintegratedwith the fixeddomain aspects (i.e., domain functionality described
using a domain language), which areorthogonalwith respect to the values of the generic
parameters. Such metaspecification describes commonalties and variations in a particular
application domain.

The MPG abstractions can be categorised into two large groups as follows: theho-
mogeneousandheterogeneousones. The form and way how the concerns are separated
underscores the essential differences between these MPG paradigms. At the core of the
homogeneous MPG isimplicit separation of concerns. At the core of the heterogeneous
MPG isexplicit separation of concerns.

HeterogeneousMPG (Fig. 2) is based on the usage of two different languages in
the same metaspecification. The lower-level language (domain language) expresses basic
domain functionality. The higher-level language (metalanguage) expresses generalisation
and describes domain program modifications. Using a metalanguage as a higher-level
abstraction, the different domain language component instances are woven together and
make up a metaspecification. The metaspecification is then used as a set of instructions
for its environment (processor, compiler) to generate the specific component instances in
a domain language.

In homogeneousMPG (Fig. 3), we have two “different” subsets of the same language,
the lower-level (domain-oriented) and higher-level (template, genericor meta) ones, and
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Fig. 2. Framework of heterogeneous MPG.

Fig. 3. Framework of homogeneous MPG.

just one design environment. The domain-oriented subset expresses basic domain func-
tionality. The generic subset expresses generality in a domain. The decomposition of a
given language into the subsets and specifying the content for each subset are subtle
problems. Therefore, one can argue that there is a thin line between programming and
homogeneous MPG. Especially, it is true with VHDL, because the language designers
have not explicitly defined which constructs are the higher-level ones. In our view, the
generic constructs in VHDL arepackages, constants, generics,andif/for generatestate-
ments.

Application of the homogeneous MPG techniques is hindered by the limited ex-
pressiveness of the domain language syntax. For example, the existing parameterisation
mechanisms in VHDL allow only changing the width of the I/O signals, but can not spec-
ify more complex modifications such as the inclusion/exclusion of the signals, the usage
of the different communication schemes, or inheritance. On the contrary, the heteroge-
neous MPG techniques are domain language-independent and have virtually unlimited
capabilities for modifying domain language code. Therefore, we argue that heteroge-
neous MPG is more suitable for customisation of soft IPs.
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3.3. Structure of SIPC Model

We describe the structure of the SIPC model at three layers: (1)Specification Layer,
(2) Generalisation Layer, and (3)Generation Layer. We illustrate the roles of the layers
by presenting a solution to a simple soft IP customisation problem: the automatic exten-
sion of soft IPs with control signals (clock, enable,and reset). This problem is trivial,
however, it has a wide application in HW design (see, e.g.,clock gating(Li et al.,2003),
input latchingandinput gating(Williams et al., 2000) techniques for low power design,
pipelining(Marinescu and Rinard, 2001) for efficiency) and allows us to demonstrate our
approach systematically.

3.3.1. Specification Layer
Specification Layer(Fig. 4) is dedicated to specifying the customisation design process,
i.e., adaptation of soft IP to the needs of a particular designer and integration into the
designed HW system. The role of Specification Layer is (1) toanalyse(parse) a soft
IP, (2) tospecifyan application-specificCustomisation modelin a semi-formal way, and
(3) to implementthe automatic extraction of the application-specific parameter values for
further customisation of soft IP.

Parsingis an application-specific domain analysis method that is concerned with au-
tomatic analysis of abstract domain representations – source code of domain language
programs. Parsing decomposes a domain language specification according to the domain
language syntax into anAbstract Syntax Tree(AST). AST then is used for extraction
of the application-specific domain information for further customisation. The aim is to
streamline selection of the context-dependentparameter values for metaspecifications.

We specify the Customisation model for given application using UMLclass diagrams
as described in sub-section 3.1. In Fig. 5, we present the specification for our soft IP cus-
tomisation problem and explain it below as follows. AninterfaceSoftIP describes the
VHDL entity of the original soft IP, which can be extended by the additional I/O ports
usinginheritance. Therealisationrelationship describes the implementation (VHDLar-
chitecture) of the corresponding interface (entity). The functionality is specified using
class methods (VHDLprocessesor procedures). Theaggregationrelationship shows that

Fig. 4. Structure of Specification Layer.
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Fig. 5. Customisation model for extending soft IPs with control signals.

the additional functionality, which implements, e.g., clocking, is composed with the orig-
inal soft IP using VHDLport mapstatement. The presented customisation model is an
example of application of aWrapperdesign pattern, which we examined in (Damaše-
vičiuset al.,2003).

3.3.2. Generalisation Layer
Generalisation Layer(Fig. 6) is dedicated for representing thegeneric components. A
generic component is a metaspecification, which uses the parameterisation-based mech-
anisms to encapsulate a family of the related domain component instances (e.g., generic
gate, generic ALU, etc.). By the family, we meana collection of the different instances,
which have similar functionality, but different (application- or technology-oriented) char-
acteristics.

The domain component instance is a structure that consists ofinterface, which is
used for communicating with other instances, andfunctionality, which implements the
functional requirements and is described using standard HDL abstractions. Note that in

Fig. 6. Structure of Generalisation Layer.
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Fig. 7. Example of PROMOL metaspecification for extending soft IPs with control signals.

VHDL, these parts of the component are calledentityandarchitecture, respectively.
Generic components can be described using generic abstractions of a standard HDL

(homogeneousMPG) or an external metalanguage (heterogeneousMPG). We can use a
dedicated (e.g., pre-processing, macro) language or a common programming language,
such as Java or C++, as a metalanguage. The generic interface serves for representing the
generic parameters of a generic component. To demonstrate heterogeneous MPG, we use
Open PROMOL (Štuikyset al.,2002a) as an external metalanguage. In Fig. 7, we present
a PROMOL metaspecification, which demonstrates the usage ofmeta-if (@if function) to
conditionally include the I/O ports into the VHDL entity. Note that the ’$’ symbols denote
the generic interface of a PROMOL metaspecification. The value of the generic parameter
ports is usually not specified manually by a designer, but rather extracted automatically
from the soft IP description.

3.3.3. Generation Layer
Generation Layer(Fig. 8) is dedicated to processing the generic components (metaspec-
ifications) and generating the customised instances of domain components. A designer
or an external tool specifies the particular instances through selection of the generic pa-

Fig. 8. Structure of Generation Layer.
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Fig. 9. Example of generated VHDL code.

rameter values. The generation process is performed automatically using a metalanguage
processor. It is important to emphasise that the conventional compilers of general-purpose
programming languages, such as C++ and Java, can be used for implementing the gener-
ation process, because these languages can be used as metalanguages, too.

Generation Layer does not introduce any new domain functionality, but rather pro-
vides a means for handling the variations encapsulated in the generic components and
performing the customisation of soft IPs. Generation Layer uses the MPG abstractions,
which allow implementing theparameterisation mechanisms, and provide the capabil-
ities for adaptation and customisation of the soft IPs to the specific requirements of a
designer.

In Fig. 9, we present the generated VHDL architecture, which adds the clocking logic
to the third-party soft IP. The functionality of the clock logic is described using a VHDL
processprocess1and the soft IP is inserted using a VHDLport mapstatement.

In the next subsection, we present the soft IP design framework based on the SIPC
model.

3.4. Soft IP Customisation Framework Based on SIPC Model

Suppose that a system designer retrieves a third-party soft IP, analyses it, and discovers
that this soft IP needs some customisation in order to integrate it successfully into a
particular HW system. Then the designer needs to perform the following actions:

(1) Analysethe domain problem,formulatethe requirements for customisation, and
specifythe customisation model using UML class diagrams.

(2) Analysethe available domain component instances,formulate the requirements
for generalisation, anddevelopthe metaspecifications using the selected metalan-
guage.

(3) Analysethe soft IP using a HDL parser, andextract the generic parameter values
for the metaspecifications.
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Fig. 10. Design flow of the proposed methodology.

(4) Generatethe customised soft IP instances from the metaspecifications using a met-
alanguage processor.

In the SIPC model, the designer performs the design steps (1) & (2) manually. The
design steps (3) & (4) are performed automatically. Design flow of the proposed method-
ology is summarised in Fig. 10.

In the next section, we present the results of our case study.

4. Results of Case Study

In our case study, we have used a variety of public-domain soft IPs: 8b ALU from i8051
micro-controller (Givargis, 2000), 32b ALU from DLX processor (Gumm, 1995), 32b
Chang ALU (Chang, 1999), and 32b Booth multiplier (Booth, 2001). Synthesis results
(Synopsys tools; CMOS 0.35 um) for the original soft IPs and generated components are
presented in Table 1.

Synthesis results show an average increase in chip area of about 38% for addedclock
logic, 11% for addedenablelogic, and 4% for addedresetlogic.

Table 1

Synthesis results

Soft IP
Area,
Cells
(IP)

Area,
Cells

(IP+clock)

Increase,
%

Area,
cells

(IP+enable)

Increase,
%

Area,
cells

(IP+reset)

Increase,
%

8b i8051 ALU 2265 2789 23.1 2415 6.6 – –

32b DLX 2280 3164 38.8 2625 15.1 – –

ALU

32b Chang ALU 1945 3044 56.5 2295 18.0 2085 7.2

32b Booth multiplier 7859 10370 32.0 8179 4.1 7942 1.1
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5. Evaluation and Discussion

Theproblemsof implementing the SIPC model are as follows: (1) analysis of domain ap-
plications and extraction of the customisation model for describing customisation of soft
IPs, (2) selection of a metalanguage and generalisation of domain objects, and (3) quali-
fication of the customised soft IPs. The key for the SIPC model is generic representation
introduced by MPG. It simplifies the control of variations, extends reusability and adds
an extra value to the soft IPs.

HomogeneousMPG capabilities of the standard HDLs allow implementing the
parameterisation-based structures of the SIPC model only partially. However, these capa-
bilities arenot enough because of (1) the lack of flexibility for describing a wide range
of modifications required for adaptation to thevariety of functional requirements, (2) the
limitations of the synthesis tools, (3) the over-generalisation problem, (4) the lack of the
explicit separation of concerns when using a single language.

We have suggested to use theheterogeneousMPG techniques introduced by the ab-
stractions of an external metalanguage. The main advantages are as follows: (1) inde-
pendence from a HDL, (2) flexibility in implementing generalisation and modification,
(3) adaptability to the synthesis tools and target technology, (4) no over-generalisation
(from the user’s viewpoint), (5) the explicit separation of concerns.

The strengths of our approach are as follows. (1) The usage of UML allows us to
specifythe customisation problem at a high level of abstraction. (2) The usage of MPG
allows us tomanage variabilityin a domain, as well as togeneratethe customised soft
IP instancesautomatically.

The limitations of our approach are as follows. (1) The UML model does not reflect
thephysical constraintsimposed on soft IPs. (2) The metaspecifications so far aredevel-
oped manually, thus requiring considerable programming efforts. (3) Thevalidationof
the metaspecifications is much more difficult than the validation of the soft IPs.

These limitations could be overcome in a variety of ways. For example, physical con-
straints can be introduced by adopting extensions of UML for real-time and embedded
systems. Development of metaspecificationscould be simplified by generating (at least)
parts of them automatically. Further research is needed to explore these possible solu-
tions.

6. Conclusions and Future Work

Increasing complexity of HW design requires adoption of the new system-level design
methods, which deal with automated customisation and integration of the pre-designed
soft IPs. We have proposed a novelSoft IP Customisation (SIPC) Model, which is based
on the usage of UML and the MPG techniques, and allows implementing application-
specific customisations of the soft IPs. The SIPC model allows achieving higher reusabil-
ity and adaptability of the pre-designed soft IPs.

Future work will focus on overcoming the limitations of our approach, as well as on
research and implementation of the customisation models for other application domains
such as embedded systems.
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Lanksči ↪u intelektualiosios nuosavyḃes komponent↪u priderinimo
modelis, gr↪istas metaprogramavimo metodais

Vytautas ŠTUIKYS, Robertas DAMAŠEVIČIUS

Šiame straipsnyje mes siūlome lankšci ↪u intelektualiosios nuosavybės komponent↪u priderinimo
model↪i, kuris yra skirtas sisteminio lygmens komponent↪u projektavimo proces↪u specifikavimui ir
realizavimui. Modelis yra sudarytas iš trij↪u lygmen↪u. Specifikavimo lygmuo yra skirtas priderinimo
proceso specifikavimui, naudojant UML klasi↪u diagramas. Apibendrinimo lygmuo yra skirtas prid-
erinimo proceso atvaizdavimui, naudojant metaprogramavimo metodus. Kūrimo lygmuo yra skir-
tas priderint↪u komponent↪u egzempliori↪u automatiniam suk̄urimui. UML leidžia specifikuoti kom-
ponent↪u priderinim↪a aukštame abstrakcijos lygmenyje. Metaprogramavimas leidžia valdyti vari-
antiškum↪a srityje, kurti bendrinius srities komponentus ir aprašyti priderint↪u komponent↪u egzem-
pliori ↪u automatinio suk̄urimo proces↪a. Sīulomo komponent↪u priderinimo modelio taikymas leidžia
palengvinti ir pagreitinti ankšciau sukurt↪u intelektualiosios nuosavybės komponent↪u atkartojim↪a,
adaptavim↪a ir integravim↪a ↪i naujas aparat̄urines sistemas.


