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Abstract. In this paper on basis of the results (Dyonanal., 2003a) the structure of Shannon
information amount in the joint filtering and extrapolation problem of the stochastic processes by
continuous-discrete time memory observations is investigated. For particular class of processes
with applying of the general results the problem of optimal transmission over the lag channels is
considered and efficiency of filtering and extrapolation receptions under transmission over channels
with memory or lag is investigated.
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1. Introduction

In (Dyomin et al., 2003a) with the use of the results (Abakumeval., 1995a; 1995b;
Dyomin et al., 1997; 2000) and the method of (Dyomin and Korotkevich, 1983; 1987;
Liptser, 1974) on the basis of the stochastic analysis using Ito (Liptser and Shiryayev,
1977, 1978) and Ito—Ventzel (Ocone and Pardoux, 1989) formulae, the problem of defin-
ing joint information amount; _[x¢, Z%; z{, ng'] about the values, of the nonobservab-

le process in the current timeand arbitrary numbet? = [z, - -, x,,] of the future

time pointss, = [s1, s2,- -+, sz], which is in realization totality{ z{; 7'} of processes

with continuous timez; and discrete time(t,,,) with memory of arbitrary multiplicity

N relatively the nonobservable process, has been researched. This paper researches the
structure ofl{ [] the point of view of representation$ , [x;, Z; 2§, ni"] through the
information amounts, [; 2, n7] and It [Z%; z¢, 3] about the values; andiZ of the
nonobservable process in the curreand futures, time points contained in the realiza-

tion totality { 2; n{* } accordingly. The results of Thears 3, 4 are presented in (Dyomin

et al., 2003b) without proofs.



172 N. Dyomin, |. Safronova, S Rozhkova

2. Statement of the Problem

On the probability spac&?, F, F = (F;):>0, P) the nonobservable-dimensional pro-
cessz; (useful signal) and the observalildimensional process (an output signal of

a continuous transmission channel) are defined by the stochastic differential equations
(Liptser and Shiryayev, 1977, 1978)

dl’t = f(t,l't) dt + (I)l(t) d’LUt7 t> 0, (21)
dzy = h(t, e, xry, 0 Try, 2) At + Do (t, 2) doy, (2.2)

and the observablgdimensional process with discrete timé.,,) (an output signal of
the discrete transmission channel) has the form

n(ﬁm) :g(ﬁmvxtmvxﬁv"'7xTN7Z)+(I)3(tmaZ)§(tm)7 m:(),l,..., (23)
where0 <tg <7 < - <7 <ty < L.

REMARK 1. 1%) The assumptions and the notation of (Dyorgiral., 2003a) are used.
29) With reference to the results (Dyomghal., 2003a) the marks = >, as a right upper
index, will be given to formula, theorems,radlaries, propositions and remarks numbers.

The problem is stated: for a sequence of time moments< s; < ... < s
is to be found the relations defining a time evolution of joint information amount
If [z, £ 2§, ng'] about the current;, and the futurezl values of the nonobserv-
able process which is contained in the realizations zget= {z,;0 < o < t}
andny® = {n(to),n(t1),...,n(tm);tm < t} of the observable processes in the form
of expansions representing ,[-] through the information amount[z;; 25, n5*] and
IY[zL; 28, ] about the current and the future values of the nonobserved process, re-
spectively.

Then, if suggested the existnof the probability densities

pl(x;l) = oL P Ly < @l < &l|2b, it} /0x0zt, (2.4)
p(t,x; 81, 3%) = X P{ay < ;3 < 30} /0x0F", (2.5)
pi(z) = OP{ay < x|28,my"}/0x, p(t,z) = OP{x, < 2}/0x, (2.6)
pe(@") =0 P{E; <@(z,ng' } /0", p(5,27)=0"P{a; <&t} /0it, (2.7)
Pl (@5 |2) = 0P P{El < &%y = @, 26, m" } ) 0F", (2.8)
p(3, 3" |t,2) = 0" P{&l < iz, = 2} /03", (2.9)
p’;‘s(xﬁ:L) = 0P{z, < x|zl = 3", 2, ni" /O, (2.10)
p(t, |3, 3") = OP{x, < 2|3k = iL}/az (2.11)

the formulae take place

If Jwe, 85 20,m5°) = Tilwe; 26, m6°) + 14,255 26, 16" 4], (2.12)
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I [, L5 2, m) = TEEL; 2, m5) + I s 26, | 2E), (2.13)
1 oo @b zboni) = M{ n [pl (@i 35)/plt s 510.30)) | (2.14)
Ii[x; Zév%n] = M{ In [Pt(ﬂﬁt)/P(tvl’t)] }7 (2.15)
I;t[fcé; b loe] = M{ o [ply (35 |) /o5, 3Lt @) |, (2.16)
Itk 2, mi) = M{ I [pL(@E) /p(5e, 78] }, (217)
Iyl 26, " 125 = M{ I [pf) (| &2) /p(t, 2|51, )] } (2.18)

whereIﬁlt[] and Itt‘s[-] are corresponding conditionaiformation amounts (Gallager,
1968; Shannon and Weaver, 1949).

3. Main Results

REMARK 2. The information amountg;[z;; 2§, ni*] and IL[ZL; 28, ] mentioned in
expressions (2.12), (2.13) are defined by Corollaryand Theoren2* (see2’ of Re-
mark 1).

Theorem 1. Theinformation amount (2.14)can be represented in theform (2.12) where
I;tH onthetimeintervalst,, <t < t,,41 iSdetermined by the equation

dI, (25 24, mi )/ ot = (1/2)tr [M{R‘l(t,z) [RGw 2o, 7F)

e, z|xt)} [h(%N, e, 7L) — hlin, z|zt)r }]

| Op!, (& |e) Olnpl,(FE[e)

_ Olnp(S, T |t, xp) (Glnp(sL7 Lit, ay )T o
Oxy oy '
with the initial condition
I;‘;Lm [j£728m7776n|$tm:| = I:‘?mo I::CS 7ZO )770 1|xtm:|
+Alt\t [‘rg;ZOm7n(tm)|xtm] ) (32)
where
h(Fw, 2le, %) = M{h(t wtv Yoo)a = 2,20 =30 25,05}, (3.3)

h(Tn, z|z) = M{h (t, 24, N, 2) |2 = 2, 26, M }, (3.4)
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ATl [# 2t n(tm) |2, ] :M{ln [C1(tm), 2|t 52/ C(ntm), z)|xtm}}, (3.5)

s|tm
Clnltm), 21w, 55) = M{C(@,, 5 0tm) 2) |20, =, 55 = 2552~ |, (3.6)
C1(tm), 212) = M{C (1,0, 2N (b)) 1, = w5250}, (3.7)
C(@,n,n(tm),2) = exp { = (1/2) (tm) = gt 2,5, 2]V (b, 2)
X [1(tm) = 9(tm, 7, 3n,2)] }, (38)

and 177 =[] = lim I, [] ast 1 t,n.

Sltm

Proof. In accordance with (2.4), (2.6), and (2.8), we have

Pl (@5 |2) = pl(a; &) /pe(2). (3.9)
Innovation process, differential of which has the forma = dz;—h(t, z) dt, h(t,z) =
M{h(t,z¢, TN, 2)|25,n), is such thatZ, = (2, F7) is Wiener process with
M{zzl\Fe) = fg R(r,z)dr (Liptser and Shiryayev, 1977; 1978). Therefore the dif-
ferentiation of (3.9) accordingtito formula taking into accourg.14)*, (3.28)* (see2’
of Remark 1) fort,,, <t < t,, 41 gives

deplyo(#1w) = { = L1, by, (8710)] + plyu(5[2) A, 21w, 35

—W}TR*(@ 2) [h(t, 2) — e, z|x)} }dt

T
044 (8 10) [RG, 21w, 50) = B, 21e)| - R (E 2) o (3.10)
The a priori density (2.9) is determined by the equation
de p(3p, 35|t x) = =L}, [p(5L, 3" |t, x)] dt, (3.11)

which follows from (3.10). Diferentiation according to Itéormula taking into account
(3.10), (3.11) by analogy wit(B.18)* gives

P (") | - {(L;z[pwmﬂt,xn L:,ztp‘;“(awx)])

d ln [f ~ ~ - ~
‘ p(SL,:L'L|t,$) p(SL7$L|t,IL‘) pi|t(:L'L|$)

T
+ (A, 22, 30) = (. 2l0) | R (L 2) oz (3.12)
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Applying to (3.12) Ito-Ventzel formula fot,,, < ¢t < t,,41 by analogy with(3.19)*, we
obtain

ol ()
[p(éL,i:ﬂt,xt)
+3 [ r[R0,2) [ #To 78— e 2o 7] 0

tm

t

—%/tr lQ(U)[alnpggx(fﬂxU)(aln;gg:(.))T

tm

In | = femr.,

Olnp(3r,it|o,z,) 0Inp(-)\T
B 0r, ( 0z, ) do

t
+/t7’ [Rl(a,z) [h(ﬁv,zwmff,) — h(i’N,z|xg)} [h(o, To, N, 2)
tTrL
S
fh(%N,z|zg,§:SL)} }do

L
pso’ |z5)
/3x |— 1 (o) o+

SL? S |U xU)
T
+/ {h(TN,z|xg,z£)—h(%N,z|xg) R™Y(0,2)®s(0, 2)dv,. (3.13)

tm

Since, in accordance with(3.3), (3.4), we have M{h(o, zg,jﬁ’,z)} =
M{M{M{M{h()|z, = w, &L = &%28,n5' oo = 28,08 }28, 16"} =
MA{MAMA(TN, 2|20, T )|xo =2, 28, 05" H2E, gt = M{M{h(mzlwa)lzo, o't
then

M{R—l(a,z) [h(m,z|x,,,5;g)—h(m,z|x,,)} [h(a, x,,,:ziv,z)—h(m,z|x,,,:zg)r}
- M{R )M )28, }} - 0. (3.14)

Taking the expectation of the left and the right part of (3.13) using (3.14)1(seéRe-
mark 1) and differentiating with respecttgives (3.1) by analogy wit3.8)*. Relations
(3.9) and(3.16)*, (3.29)* imply that

P, @2 1) = [Cnttm), 2L, 55) /C (ntm), 212) |5 O ). (3.15)
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The substitution of (3.15) into (2.16) gives (3.2), (3.5). Expansion (2.12)/fqf]
arise from using (3.9) in (2.14) taking into account (2.15), (2.16)@(dr; 51, 7%) =
p(t, 2)p(5e, 2" |t, ).

Theorem 2. Theinformation amount (2.14)can be represented in the form (2.13) where
If‘s[-] onthetimeintervalst,, <t < t,,+1 isdetermined by the equation

drf|, [2e; 20, m5" 1 L/t = (1/2)157’[ {R*l(t,z)[h(%N,zm,fg)

—h(7n,t, z|i£)] [h(f'N, 2|z, L) — h(TN, ¢t z|i£)}T}}

1 Olnpfy (z:|2y) Olnpf (we|Z0)\ T
—5tr [Q(t)M{ o ( i )

81np(t $t|SL7 s)(alnp(t :L't|SL7 s))T
aiEt Gxt

+ir

Q(t)M{ [alnpﬁs(wﬁig) B 81npt(xt)} (alnpt(;pt))T

axt aiEt Gxt
alnp(tv:rt|§[n‘%l~/) alnp(tv:rt) alnp(tv:rt) T
— 52— 3.16
[ o0xy o0xy } ( o0xy ) ( )
with theinitial condition
I:m\s[ztm;zémvngl|js] = I:m|50 [$tm;28m',n$71|f£}
+AIttm'|5 [ztm ; zém, n(tm)|§:SL] , (3.17)
where
h(TN,t, z|ZT) M{h (t,xe, 27, 2 | 7 20,770 } (3.18)
AI::‘S[xtmazoman(tm”i‘s}
= M{ 10 [COr(tm) 2|, 55)/Cln(tm). 215)] }. (3.19)
C(n(tm)aZﬁL) = M{C(ztmvjivan(tm)az)m'l/:zl/ ZO a776n 1}5 (320)

and ;" °[] = lim I}, [] st | tp.
Proof. From (2.4), (2.7) and (2.10), we have

Pl (2l &) = pi(a; &5) /ol (&5). (3.21)
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The differentiation of (3.21) accordirto Ito formula taking into accouri8.14)*, (3.37)*
and(2.11)* gives

du gty (2] ) = {c [P (l2): e ()]

T
9} (@15) [AF 2o, 57) = B, 1 2l78)| R7(E2)

X [h(t, 2) — h(no 1, z|5cL)] } dt

T
0}y, (@]2") [, 21, 30) = B, £ 2130 | R (L, 2) 0. (3.22)

The a priori density (2.11) is determined by the equation

dep(t,z|5, &%) = Lea[p(t, 2|52, 2"); p(t, )] dt, (3.23)
which follows from (3.22). It follows from (3.21),3.16)*, (3.38)* that

P o (@lEE) = [Cntm), 21w, 3) € (n(tm). 2157) |pie 0w l25). (3:24)
The differentiation of (3.21xccording to Ito formula taking into account (3.22), (3.23)
and, then the use of Ito-Ventzel formula brings us to (3.16). We omit the transformations,
since it is similar to transformations of.(3 production. The substitution of (3.24) into
(2.18) gives (3.17), (3.19). Expansion (2.13) fr,[-] arise from using (3.21) in (2.14)
taking into account (2.17), (2.18) apét, =; 51, #%) = p(31, 2%)p(t, |51, T%).
COROLLARY 1. The information amount (2.14) is determined by Theotém

Proof. Since

Inpy, (3" |2) = Inp{ (23 2") — Inpy(2),

Inp(5p, " |t,2) = Inp(t,;5.,7%) — Inp(t, x), (3.25)
npfy, (2&") = npf (z; #°) — Inpl(2"),
Inp(t, |5, #") = Inp(t,z; 5., 7%) — Inp(5., &%), (3.26)

using (3.25) in (3.1) and (3.26) in (3.16) and, then substituting its equationS&3J*,
(3.32)* into (2.12) and (2.13), respectively, we obtd#8)*. The use of (3.2), (3.5),
(3.15), (3.25)(3.24)*, (3.25)*, (3.29)* in (2.12) or (3.17), (3.19), (3.24), (3.263.33)*,
(3.34)*, (3.38)* in (2.13) gives(3.9)*, (3.12)*.

REMARK 3. The research df _[-] structure can be realized in a different way.
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It is evident that

ﬁPW{Rﬂuxﬂhﬁmzwuﬁﬁ—h“”ﬂ“F}]

= tr |3 R 0,2) (W 2T ) — o )] 7}

+tr [M{Rl(t, 2) [h(ﬁv, 2oy — I, z)} 17 H , (3.27)
( ( m)vz|$tmai'£) ( ( m)vz|$tm7j£)
M{mcn&mwmw }M{mcgémﬁaag )
Cn(tm), 2|z,
+M{1n —(ggn(t)m)!z) )}, (3.28)

[ - )
- [M{R_l(u 2) {h(ﬁv, 2|z, L) — h(7n, 1, zlszg)} [* H

Ftr [M{R_l(t,z) [h(m,t,z|z ) — (t,z)} (7 H (3.29)
( ( m)vz|$tma"i'£) ( ( m)7z|xtm7 ~s)
M{ In - né’(n(tm),z) } - M{ In (1;7 tm), 2|ZL) }
s L
+M{1n%}. (3.30)

Then, the use of (3.27), (3.28), (3.25), or (3.29), (3.30), (3.26) in Thearebnings us
to expansions fof} [] which along with (3.1), (3.2)(3.23)*, (3.24)* or (3.16), (3.17),
(3.32)*, (3.33)* can be interpreted as expansions (2.12), (2.13).

4. Conditionally-Gaussian Case

We consider the case of conditions

fC)=f@) + F(t)ze, po(x) = N{z;po,To},
h() :h(taz>+H07N(t’z)$£V:1a g() 79( )+G0 N( m, 2 )"Ei\fnf:a (41)

Ho () = [Holt, 2)H (¢, 2)} - Sl (8, 2)| = [Ho(t, 2)Hin (1,2)]
Gon ()= [ Goltm, 2):G1 (b, 2): - (G (tm, 2)| = | Goltm, 2)iG x (b, )] (4.2)
when the property4.4)*, Propositior2*, and Remark* take place.

REMARK 4. The information amountg[z:; 28, ni*] and It[zL; 28, ni'] mentioned in
expressions (2.12), (2.13) are defined by Coroli&rand Theorerd™.
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Theorem 3. The information amount (2.14)can be represented in the form (2.12)where
I;t[-] onthetimeintervalst,, <t < t,,+1 isdetermined by the equation

df s\t[ 55207770 |xt}/dt

=(1/2)tr [M{Rl(t, 2)[Hpa (t,2) (T2 (¢, 50)) T HE 4 (¢, 2)
ot 90 O] (12)] )|
—(1/2)157«[ [M{F (t|5) T (1)} — [D—l(t|§L)—D—1(t)]H (4.3)

with theinitial condition (3.2) where

ALR [1= WQ)M{ I [ [T (5t — 0)]/ [T Gt } (4.4)
TE(5plt) = TH(t,5;) — (fé,N+1(ta gL))TF_l(t)f§7N+1(t, 5L), (4.5)

and TE+L(¢,5.), T(t), T(t|3L), Ho(t, z), Hp41(t, 2), D(t), D~(t|3.) are determined
by (4.4)* and Theorem 3*.

Proof. For p! (Zn[z) = OVP{iy < @nlve = w28, n5'}/02n by analogy with
(4.13)*, (4.14)*, we have

ps_lt(i‘]ﬂl‘) :N{j ﬂ (TN|t FN TN|t },
fin (Fnlt) = fin (Fa, 1) + Doy (P, T 7 () [z — p(t)], (4.6)
Ty (7 lt) = T (7w, t) — Ton (Fa, )0 () Ton (Fv, £).

Formulae (3.3), (3.4), (4.1), (4.2), (4.6), aqd13)*, (4.14)* imply that

h(7n, z|lz) = h(t, z) + Ho(t, 2)x + Hi n(t, 2)fin (T [t),
h(’?‘N, Z|:L', :Z'L) = h(t, Z) + Ho(t, Z)$ + HLN(t, Z),ELN(’?'NH, =§L)- (47)

Then, from (4.6), (4.7) anfi.13)*, (4.14)*, we have

B, 21w, 5) = B, 2Je) = Hyn [DRFHIE) 71 [0 = 34 (4, 5,)
I e — ()] (4.8)

From (4.8) taking into accourit.17)*, we obtain

] [ 28— s o) L7
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= Hy NTE OO T HE y + HinTENT ' Ton HY
7H17NfJLV+1 (fL+1)71 (foLjv1+1)TF71f0NH17:N

—Hy NTONT TSR (T @Y T HY . (4.9)

Formulae(4.9)*—(4.11)*, (4.14)*, (4.17)*, (4.19)*, (4.21)* imply that

HynThy = Ho — Hol, HinTh™ = Hpoq — HiLG i,

Hp (T HTE L )T = Ho. (4.10)

Substitution of (4.10) into (4.9) with the help 6£.22)* yields

] [ 2R ) s o) L7

— Hyga(t,2) (TN, 50)) T HE L (8 2) — Ho(t, 2)T N (0 HT (1, 2).  (4.11)

Relations (3.9), (3.21) imply tha®lnpl,(z"|x)/0x = Olpj (x|z")/0x —
0lnp,(z)/0x. According to(4.25)*, (4.27)*, we have

O pl, (& ]2)/0 = T (O — p(t)] — T (tl1) [¢ — u(tl51)]. (4.12)

It follows from (4.12) and4.7)*, (4.24)* that

alnpt (3~3L|$t) alnpt (3~3L|=’Et) T
s[t\"s s|t\*s ¢ om | 1 B -
M{ Oxy ( Oy ) ‘207770 } =T7'(ts.) =T~ (t). (4.13)

Analogous calculations with regard to Remark give

Olp(p, 2Lt ;) (OInp(SL, ZL|t, 2 )\T 1. 1
M{ i ( W ) — D7Y(t[3) — DL(1). (4.14)
Substitution (4.11), (4.13), (4.14) in @, taking into account the property/{-} =
MA{M{-|2§, n5'}} gives (4.3). Sinceyl,(z"]x) = N{z"; i (5.]t),T"(5[t)}, then
according to (3.15) by analogy wifd.32)*, we have

Olltm). e, T\ _ Ly £, I Gilim = O)
M{ln C(U(tm),2|$tm) }_QM{l |fL(§L|tm)| } (4.15)

Then, (4.4) arises from (3.5), (4.15) and (4.5) arises fidmi)* taking into account
the property for Gaussian densipf(z; %) = pi(z"*!) = N{zP*H akt(t, 55),
r'L+1(t,5%)} (Liptser and Shiryayev, 1977; 1978).
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Theorem 4. The information amount (2.14)can be represented in the form (2.13)where
Itt‘s[-] onthetimeintervalst,, <t < t,,+1 isdetermined by the equation

dl,f‘s [24; zé,nﬂi:ﬂ/dt = (1/2)tr []\4{R1(t,z)
x [ﬁm(t,z)(fm(t, 1) LHE, ((t2) — Hp(t, 2)(TE(t, 50) ) HE (8, z)m
= (1/2)tr | Q) [M{T (tf51)} — D™ (t151) | (4.16)

with the initial condition (3.17)where
AL = (1/2)M { In [!F(tm —0[3)|/ !F(tmlémﬂ } (4.17)

and 'L (¢, 5.), TLL(¢,5), D(t[3L), HL(t, 2), Hpy1(t, 2), D(t]3L) are determined by
(4.4)* and Theorem 3*.

Proof. Forpy, (z[z") = OP{x: < 2|z = &", 2§, 15"} /0= by analogy with (4.6)
Pi\s(ﬂi’L) = N{z; u(t|5L),T(t[5L)}, (4.18)

whereu(t|51) andI'(t|5.) are determined by4.7)*, (4.24)*. Formulae (3.18), (4.1),
(4.2),(4.4)*, and(4.37)* imply that

(7w, t,z|ZF) = h(t, z) + Ho(t, 2)p(t|51) + Hi N (t, 2) in (Tn, 51, (4.19)
an(Tn,t5L) = N (T, t)

1K vy P, 1, 80) (TE(8,50)) T [&5 — b (4,52)] (4.20)

Then, it follows from (4.7), (4.19) that

h(Tn, 2|z, L) — h(TN, t, 2|ZL) =

= Ho(t,z) [l’ — ,u(t|§Lﬂ + HLN(t,Z) [ﬁN(%N“; §L) — ,&/N(%NﬂflgL)]- (421)

Analogously to (4.9) the use 64.13)*, (4.24)*, (4.20) in (4.21) gives

M{ [RG, 2lwe, 3F) — BEw st 2150 | 17128, " |
= Ho[T = T 4, (09 T 6 R )T G
—HoT§ y iy O HE + Hp T2 HE
~Hp (D7) TR (O T T + HoDg R, (P4 ) T TR (B T

—Hy (T4 ™M Ty ) T HG — Hp (CF) 7 TR (T T
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HH L (TR~ ORI (@) " O )T HY + H(TF) T HY (4.22)
PRt 52) = M{ a5+ — @0 5] [3F — ik (6, 50)] b, |

L (5
_ [ ofz\qtl’(ngL)} . (4.23)

By analogy with(4.22)* using(4.9)*, (4.17)*, (4.19)*, (4.21)* and (4.23), we obtain

Fé‘-};{l—kl(ta gL) (fL-H(ta gL)) F%-:-ll (ta gL) = fOL,N-',-l(ﬁa gL)a (4-24)
HL+1(t,Z)(fL+1(t,§L)) Fﬁtll(t,sL) = ﬁL(ﬁ,Z). (425)

Substitution of (4.24), (4.25) and.22)* into (4.22) gives

M{ [RGw . 2lee2F) — G, b 220 17 26,6}
— Hpr(t,2)(T5Y(4,5,)) T HE (1, 2)
—Hp(t,2) (TF(t,50)) T HE(t, 2). (4.26)

The use of (3.26)4.26)*, (4.30)*, (4.31)* yields that

{[alnpt|5 xy|ZL) /02| [Glnpt|s(xt|x )/ 0] |zé,776”} =T 1(t[5L),

{[81np (t,x¢|5L, T )/8xt] [0Inp(t, z4|3L, T2 )/8zt} } = D (t]31),

M{ [0l (@1]aE) /O, — Olnpi(ae) /O] (DI pi(i) /0] 24,75 } = O,
[

{ Olnp(t, x|, 2L) /0y —OInp(t, x,) /O] [0 In p(t, x1) /O] }:O. (4.27)

Substitution of (4.26), (4.27) into (3.16), taking into accoliff-} = M{M{-|z{,n7*}}
gives (4.16). The use of (4.18) in (3.19), taking into account (3.24) analogously to (4.4)
brings us to (4.17).

COROLLARY 2. The information amount (2.14) is determined by the Thed¥ém
Proof. Substitution of (4.3)(4.33)* into (2.12) or substitution of (4.16)J4.35)* into
(2.13) brings us to (4.5) According to (4.5) and4.6)*, (4.7)*, we have (Gantmakher,
1988)

[TEFA (¢, 50)| = (D@ [THGLl)], TR 80)| = [T (¢ 50)| D32 (4.28)

The use of (4.28) in (3.2), (4.4) or (3.17), (4.17) taking into account (2.12) or (2.13)
brings us ta(4.12)*
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5. Optimal Transmission of the Gaussian Markov Process over the Lag Channels
by the Silent Feedback

In (Dyomin et al., 2003a) the problem of transmission of a stochastic signal over the
continuous-discrete channel withe memory of a single multiplicityN = 1,71 = 1)
has been considered. This item is devoted to the problem of optimal transmission when
in continuous and discrete channels the past signal value transmitted, i.e., contin-
uous and discrete channels are the transmission channels with lag. Case of a continuous
channel with memory and a discrete one with lag and case of a discrete channel with
memory and a continuous one with lag are considered. A comparison of efficiency of
discrete channels with memory and lag is made.

The signalx;, an output message of the continuous transmission chapaald an
output message of the discrete transmission chay(mgl) are scalar and defined in ac-
cordance with (2.1)—(2.3), (4.1), (4.2) in the form

dr; = F(t)ze dt + &1(¢) dwe, po(z) = N{x; po, v}, (5.1)
dz; = h(t; Zr, Z) dt + @Q(ﬁ) dvy, n(tm) = g(trm L7, Z) + ¢3(tm)€(tm)a (52)

0<tg <7<ty <t
Problem formulation: in the class of coding functionds = {H';G'} =
{h(-); g(-)}, satisfying energy limitations

M{R*(t, v, 2)} <h(t), M{g*(tm,xr,2)} < Gtm), (5.3)

the functionalsh®(-) and ¢°(-), which provide the minimal decoding erréx®(t) =
inf A(t) with regard to a filtering problem, are to be found, wheéxg) = M{[x; —
#(t, z,7n)])?} is the mean-root-square error of filtering estimatg z, ) of the process;
corresponding message; n* } accepted by the givef(-) andg(-).

Since givenh(-) and g(-), a posteriori meam(t) = M {x:|z{,n;} (Liptser and
Shiryayev, 1977; 1978) is optimal in mean-root-square sense filtering estimate, then
A(t) = M{~(t)}, wherevy(t) = M{[z: — p(t)]?|28, ni}. Thus, we haveA®(¢) =
inf M{~(t)}.

REMARK 5. It is obvious that, up to the momentwhen0 < ¢tg < ¢, <t < 7, wWe

haveh(-) = h(t, x¢, 2), g(+) = g(tm, 21, , 2), i.€., the current values of the procassare
transmitted. Suppose that in this case thednaission is proceeded in an optimal manner.

Theorem 5. Intheclass K} = {H};G]'} of linear functionals

Hi = {h("): h(t,xr,2) = h(t,z) + Hi(t, )z, },
Gl ={9(): gltm,xr,2) = g(tm,2) + G1(tm, 2)z, } : (5.4)
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19) optimal coding functionals h°(t, z, 2°), ¢°(tm,z-,2") and optimal message
{297°(t,,)} are defined in the form

RO(t,2%) = —HY(t, )0 (7,0),  HY(t,2°) = [R(t)/AY ()] 2, (5.5)

O(tm, 2°) = =G (tm, 2°)p° (7, tm — 0),

GO (tm, 2°) = [G(tm) /A% (7t — 0)] % (5.6)
d20 = [A(t)/AY (7, 8)] P [er — u0(7, £)] ot + Bo(t) dy, (5.7)
0 () = [(tm) /A% (st — )] — 10, by — 0)] + B3 (t)E(t); (5.8)

29) optimal decoding .°(t) and a minimal decoding error A°(¢) on the intervals
tm <t <ty aredefined by the equations

<

du®(t) = F(O)u° () dt + R1(8) [a(t) /A% (7,1)] /2 AY, (7, 1) 2, (5.9)
dA’(t)/ dt = (2F(t) = R (OR(1)[(AG: (7, )2/ A (DAY (r.1)] ) A%
+Q(t) (5.10)

with theinitial conditions

1 (tm) = 1 (tm — 0)
FAYL (7, tin=0) [d(Em) /A% (7, b= O)] 2 [V (t) +3(tm)] 00 (t), (5.11)

04 Y= AVt o)V tm)
A(t,) = A%(t,, —0) T + 50
g(tm) (A, (7, — 0))2
g {1 TVt <1 - Aty - 0)AY, (7, by — 0))} : (5.12)

where Q(t) = ©1(t), R(t) = ®3(t), V (tm) = P5(tm);
3% pf(rt) = M{z:[(z°)h, (1°)i'}, AY(7,1) = M{[z- — p°(7,1)]*}), and

Ay (1,t) = = M{[ze — p°(t)][z- — puO(7,1)]}) on theintervals ¢, < t < t,,41 are
defined by the equations
A (r,t) = [ HAY, (r,6)] % d2?, (5.13)
dAT; (7, t)/dt =Rt )71( )AL (7,1), (5.14)
B 1

dAD, (7, t)/ dt = [F(t) R™H()h(1)] Ajy (7, 1) (5.15)

with theinitial conditions

/LO(’rv tm) = /LO(Ta bm — 0)
)

3t A (7 = O] 2 [V () + §(m)] 10 (), (5.16)
A (7o tn) = V() [V(Em) + §(tn)] AL (7t — 0), (5.17)
AS (7 tm) = V() [V(Em) + §(tn)] ™ A (7, i — 0). (5.18)
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Proof. If given {i(-);¢(-)} € K on the intervalg,, <t < t,,11 (see (Abakumovat
al., 1995b; Dyominet al., 1997) and Poposition2*) u(t) and~(t) are defined by the
equations

Hp(t)dt + R Hy(t, 2)v01 (1, 1) dZt, (5.19)
dy(t)/ dt = 2F (t)y(t) — R~ () HT(t, )76, (1, 1) + Q(¢) (5.20)

with the initial conditions

(1(tm) = p(tm — 0) + G (tm, 2)701 (T, tm — 0) [V (tm)

G (b 2)711 (Tt — 0)] ™ 7(Em), (5.21)
Y(tm) = (tm — ) G (tm, 2)701 (T, m = 0)[V(tn)
-0

+GE(tm, 2)711(7, tm (5.22)

= M{z-|25, 15"} yo1(7,1) = M{[we — p(®)]lzr — (7, 0)]lz5, 75"}
M{[zr — p(r £)][26, 5" }

dz, = dz; — [h(t, z) + Hi(t, 2)p(7, t)] dt,
ﬁ(tm) = n(tm) - [g(ﬁmv Z) + Gl(tma Z)M(Tv tm — 0)] (523)

where p(7,t)
T1(7,t) ==

SinceM{-} = M{M{-|zk™,ny"~'}}, the use of (5.4) in (5.3) yields

M{g*()} = M{ [9(tm, 2) + G (b, 2)a(, tm — 0)]2}
+MA{G (tm, 2)11 (Tt — 0)} < G(tm). (5.24)

Formula (5.22) can be presented in the form

731(7—7 tm - 0)
Y(tm) = Y(tm—0) T
Yo1(7, tm = 0) Vi(tm)
'711(7', tm — 0) [V(tm) + G%(tm, Z)’}/H(T, tim — O)] ’ (5.25)

Suppose that fot < t,, the transmission was proceeded in an optimal manner. Then,
Y(tm —0), Y11(7, ts — 0) @andyoy (7, t,,, — 0) are replaced b (¢, —0), AY, (7, t,,, —0),
AJ (1, t,, — 0) which are nonrandom. From (5.24), (5.25) t&(t,,,) = M{y(t;)}
taking into account Jensen inequality{Y ~'} > (M{Y})~! (Liptser and Shiryayev,
1977; 1978) it follows that

(AGy (7, tm — 0))*

A (T, tm —0)
(AG (7 tm —0))%  V(tm)

A(1)1 (7-7 tm - 0) [V(tm) + g(tm)]

Alty) = A%t —0) +
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_ V(tm)
= At O S ]
§(tm) (AY, (7t — 0))2
) {1 " V(tm) <1 Aty . 0)AY, (7, t — 0))} : (5.26)

The use of (5.6) in (5.25) yields thaf' (t,,) = A°(t,,) which is defined by (5.12).

It follows from (5.12) and (5.26) that coincidened(t,,) with the low bound for
A(t,,) proves an optimality of the coding (5.6) and (5.8), (5.11), (5.12) follows as a
result of substitution (5.26) into (5.2), @), (5.22) taking into account (5.23). If given
{h(-);9(:)} € K} on the intervalg,, <t < t,,41 (see (Abakumovat al., 1995b; Dy-
ominet al., 1997) and Poposition2*) u(7,t), y11(7,t) and~o1(7,t) are defined by the
equations

du(r,t) = R™Y(t)Hy (t, 2)y11 (7, ) A, (5.27)
dyi1(7,t)/ dt = fR_l(t)H%(t, 2)7121(7', t), (5.28)
tyor (7, 1)/ dt = [F(t) — R~ (t)H7 (t, 2)711 (7. 1) ] Y01 (7. 1) (5.29)

with the initial conditions

(T, t) = (7, t — 0)

+G1(tm, 2)711 (Tt —0) [V (tm) + GF(tm 2)711 (T, tm — 0)]
Y11 (75 t) = 711(7,tm — 0)

— G (b 2DV (Tt = O) [V () + G2 (Ems 2) 711 (T b — 0)] (5.31)
Yo1 (7 tm) = Yo1(7, tm — 0)

— G (tm, 2)701 (T, tn—0)711 (7, tin—= 0) [V (tm)+ G (Em, 2) 711 (7, tim—0)] ~/(5.32)

—1.

i(tm),  (5.30)

The substitution of (5.6) into (5.30)—(5.32gking into account (5.23), gives (5.16)—
(5.18).
Let us represent the (5.20) in the form

d (1)) ot = (2F (1) = R (O HE(E 2)ma(7,1)
X [31 (. 6)/1(Em (7] )7 () + Q). (5.33)

Suppose that up to the momenk ¢, the transmission is proceeded in an optimal
manner. Then differential equation (5.33) on the time intetyaK ¢ < ¢,,+1 iS equiva-
lent to integral equation

v(t) = A° (tm)

X exp { / (2F(0) — R Yo)H? (0, 2)y11(T,0) [731 (1,0)/v()y11 (T, U)D da}

tm
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t t

+ [e@en{ [ (2ru-r Wm0

tm o

X [731 (1,u) /v (uw)y11 (T, u)}) du} do, (5.34)

validity of which is proved by differentiating with respect to Since M{-} =
M{M{-|z§, ni*}}, then the use of (5.4) in (5.3) yields

M{R2()} = {[ (t,2) + Hy(t, 2)u(r, t)f}
—I—M{H 7117t}<h (5.35)

Using of Jensen inequaliy/ {o(Y)} > p(M{Y}) (Liptser and Shiryayev, 1977; 1978)
for the convex functionpo(y) = exp{y} in (5.34), we obtain inequality foA(t) =

M{~(t)}

A1) >A0(tm)exp{ j [QF(J)Rl(U)M{Hf(J,z)’yH(T,U)

m

X ['731 (r,0)/v(@) 11 (T, U)} } da}

+ /tQ(a) exp { /t (2F(u)—R‘1(u)M{H12(u,z)’yn(T, u)
x [ (r ) /()i (7, )] }) du}da. (5.36)

The use of (5.5) in (5.20), (5.28), (5.29) brings us to equationsyfat), 19, (7, ),
7, (7,t) onthe intervat,, <t < t;41

&) (6)/ d=(2F (1)~ R (DR [(4: (7, )2/ ()AL (7. 1)])2° (1) +Q(1), (8.37)
7O (tm) = At >

ity (7,8)/ dt = =R (DR | (11 (r.1) /A% (7. (5.38)
711(77tm) A?l( tm),
i (7, 8)/ ot = (F(t) = R ORO [ (/AL (0] )b (r8),  (6.39)

701 (T tm) = Agl( tm)-

Equations (5.37)—(5.39) imply that (t), 5, (7, 1), andy?1 (7,t) are nonrandom values.
According to (5.35), we havel/{ HZ(t, 2)}4Y, (,t) < h(t). Then, from (5.36), we ob-
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< [ (ro) et (ro)]) oo}
+ /Q(a) exp {/ (2F(u) — R (u)h(u)
< OB ()2 (] ) d f o (5.40)

Suppose)’(t) is the right part of (5.40). Then, differentiation with respect gives that
A°(t) is defined by the equation

dA°(t)/ dt= (2F (1)~ R~ (h(1) (181 (1. 1)2/2° (0751 (7, )] ) A°(6) + Q(1), (5.41)
A (t)]i=s,, = A (t,,).

It follows from (5.14), (5.38) and (5.15), (5.39) that the solutions of these equations are
coincident, i.e.p?, (1,t) = A, (1,1), 78, (7, t) = A, (7,t). Therefore, the solutions of
(5.37) and (5.41), (5.10) are coincident, i (t) = A°(#). Coincidencey’(t) with the

low bound forA(t) proves an optimality of coding (5.5). Equations (5.7), (5.9), (5.13)
follow as a result of substitution (5.5) in (5.2), (5.19), (5.27). The validity of proved result
for arbitrary time intervat < ¢,,, < t < t,,,4+1 is derived with respect to induction, taking
into account Remark 5.

Theorem 6. Suppose 17 [z+; (2°)§, (n°)i] is the information amount, attained on the
coding functionals (5.5), (5.6). Then property

Blae (2°), (1°)5'] = sup L[ze; 26, ng)'] (5.42)
takes place, where the supremumis taken for {A(-); ()} € K}, and

I [ (%), (0")57]

g(ti g(t; 0 (1,t; — 0))2 -1
+% T<ti<tln <{1 " ‘g/((z))} [1 i é(ézi)) <1 N Ao(l(fiAgl(())At%(T(,)?ﬁz - 0))] )
[ o 8.(r,0))2
+% / [Z((U; A(OA(E)(A%(Q 5= Q)( Aol(a) - Dza))] dor. (5.43)
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Proof. According to lhara inequality (Lipser, 1974; Lipser and Shiryayev, 1977; 1978)
A(t) = D(t) exp{—2I[-]}, we obtain

L[] < (1/2)In[D(t)/A(¢)]. (5.44)
Since, in accordaze with Theorem 5nf A(¢) = A%(¢), then from (5.44), we have
sup [o[] = I} [x4; ("), (0°)5"] = (1/2)In [D(t)/A°(2)]. (5.45)

Since on coding (5.5) and (5.6):(z) = N{z;p’(t),A°#)} and p(t,z) =
N{z;a(t), D(t)}, we obtain

1] = M{ 0 [pi(w)/p(t,20)] | = (1/2)In [D(0)/A°(2)]. (5.46)

Coincidence (5.45) with (5.46) proves the property (5.42). From (5.46) follows that

dil] 17 1 dD(t) 1 dA%)
& 2 {D(t) & A0 & J (5.47)
Since for Gaussian procesg defined by the equation (5.1), we have
dD(t)/dt = 2F(t)D(t) + Q(t), (5.48)

then, the use of (5.10), (5.48) in (5.47) for < ¢ < t,,41 Qives

dI)[] 1/ h(t) (AY(r.1)? 1 1
& 2 (R(t) Ao(t())Agl(T, i {Ao(t) - WD (5.49)

From (5.46) follows that
I [1=(1/2)In [D(tn)/A%(tm)]. (5.50)

Using (5.12) in (5.50), we obtain

50 ([” | o S s rermer )] ) (651

Formula (5.43) obviously follows from (5.49), (5.51).
COROLLARY 3. The solution of optimal transmission problem on the intetval ¢y <
tm < t < 7is defined by Theorerd* and Iy [z, (2°)f, (n°)5] is determined by Theo-

rem7*.

Correctness of this result follows from Remark 5 and Remsark
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REMARK 6. The usage of (5.4)—(5.6) in (5.3) gives tHat{[h°(t, z,, z9)]2} = h(t),
MA{[g°(tm, v+, 2°)]?} = G(tm), i.e., by the optimal means of transmission energy ca-
pacities of continuous and discrete transsion channels are completely applied.

REMARK 7. Since capacitg'[0, T'] of the transmission channel is defined in the form of
C[0,T] = sup{(1/T)Ir[-]} (Shannon and Weaver, 1949; Gallager, 1968), according to
Theorem 6 by continuous-discrete way of transmission (5.1)—(5.3) the coding functionals
(5.5), (5.6) provide the transmission of a maximum possible information amount in the
classk; of the linear functionals (5.4).

REMARK 8. The proof of the similar Theoreft result is open for research.

Let us consider the cases: 1) the continuous channel with memory and the discrete
channel with lag, i.e.h(:) = h(t, z:,2-,2), g(-) = g(tm,zr,2); 2) the continuous
channel with lag and the discrete channel with memory, i), = h(t, x,,2), g(-) =

g(tm; Lty L1y Z)
COROLLARY 4. Inthe classC;"' = {H,;G}'} of linear functionals

Hy = {h(-): h(t, s, @+, 2) = h(t,z) + Ho(t, 2)zy + Hi(t, 2)x, |,
gll = {g() g(ﬁmvxﬂz) = g(ﬁmvz) + Gl(tmzz)w'r} : (5.52)

19) optimal coding functional&® (¢, z;, =, 2°), ¢°(tm, =, 2°) have the form(6.5)*
and (5.6);

20) optimal messagéz?; n°(t,,)} are defined by formulag.7)* and (5.8);

3%) optimal decoding:” (¢) and a minimal decoding erréx®(¢) on the intervalg,,, <
t < tmy1, are defined by (6.9)*) and (6.10)* with the initial conditions (5.11) and
(5.12);

49) uO(7,t), AY, (7,t), andAY, (7, t) on the intervalg,, < t < t,,+1 are defined by
the equations

e p0(m,t) = R () [R(t)/A°(8)] V2 A, (7, 1) 22, (5.53)

dAY, (7,1)/ dt = =R~ (1) [A(t)/ A ()] (A, (7, 1)) (5.54)

and (5.15) with the initial conditions (5.16)—(5.18).
In the classC;" = {#}; G} of linear functionals

Hll = {h’() h(tvx‘rv Z) = h(tv Z) + Hl(ta Z)x‘r}v
G = {g(> g(tma Lty s Lrs Z) = g(tmv Z) + GO(tmv Z)ztm + G (tma Z>$T}: (555)
5%) optimal coding functional&® (¢, z., 2°), ¢°(tm, x4,,, x+, 2°) have the form (5.5)

and(6.6)*;
6°) optimal messagéz?; n°(t,,)} are defined by formulae (5.7) ar6.8)*;



About Sructure of Shannon Information Amount 191

7%) optimal decoding.’(¢) and a minimal decoding erréx®(¢) on the intervalg,,, <
t < t,41 are defined by (5.9) and 5.10 with the initial conditigfisl1)* and(6.12)*;
8%) uO(r,t), AV, (7,t), andAY, (7, t) on the intervals,, < t < t,,,+; are defined by
(5.13)—(5.15) with the initial conditions

/LO(’rv tm) = /LO(Ta tm — 0)
A (7t — 0)[3(t) /A (b — OV (b)) + §(tm)] 0 (tm),  (5.56)
V(tm)

[V (tm) + G(tm)]

g(tm) (A, (7, tm — 0))?

V(tm) (1 At . 0)A9, (7, by — 0))}

A?l (7_7 tm) = A?l (7_7 tm - 0)

« [1 + (5.57)

for u0(r,t) andAY, (7, t,,), and with the initial condition (5.18) faAd, (7, t).

Proof. If given{h(:);g(-)} € K; of the form(6.4)* on the intervals,, <t < t,,+1 (See
(Abakumoveet al., 1995b; Dyomiret al., 1997) and Poposition2*) p(7,t) v11(7,t) and
~o01(T, t) are defined by the equations

du(r,t) = R (t) [Ho(t, 2)v01 (7, t) + Hi(t, 2)v11 (7, )] dZ, (5.58)
dyii(7,t)/dt = —R™Y(t) [Ho(t, 2)v01(, t) + Hy(t, )71 (T, t)]z, (5.59)
o1 (7, )/ dt = F(t)yo1 (7, t) — R™'(t) [Ho(t, 2)v(t) + Hi(t, 2)v01 (T, t)]

X [Ho(t, z)y01 (7, t) + Hi(t, 2)y11 (7, t)] (5.60)

with initial conditions

(T, tm) = p(T, tm — 0)

+[Gotm, 2)701 (T, tm = 0) + G (tms 2)711 (7, L — 0)]W ™1 (E10) 71 (), (5.61)
Y11(75 tm) = y11(75 tin — 0)

~[Goltms 2)701 (st = 0) + G (b D311 (Tt — O W ), (5.62)
Y01 (T tm) = Yo1 (7T, tm — 0)

—[Go(tm, 2)v(tm — 0) + G1(tm, 2)y01 (T, tm — 0)]

X [Go(tm, 2)701(Ty tm — 0) + G1(tm, 2) 711 (Tt — 0)} W (t), (5.63)

where &, = dz; — [h(t, z) + Ho(t, 2)u(t) + H1(t, 2)pu(r, 0)] dt, 7(tm) = n(tm) —
[9(tm, 2) + Go(tm, 2)p(tm — 0) + G1(tm, 2)u(7, ty — 0)] @andW (t,,,) are determined

by formula(6.17)*. Equations (5.53), (5.54), and (5.15) are obtained as a result of using
(6.5)* in (5.58)—(5.60). Initial conditions (5.56(5.57), (5.18) are obtained as a result of
using (6.6)* in (5.61)—(5.63). The other statements of Corollary obviously follow from
Theorem 5 and Theore#ft.
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COROLLARY 5. 1°) Inthe classC)"' = {H;;G}'} of the form (5.52) the property (5.42)
takes place and

Rl ()6, (1°)8]
o 1 g(tl) g(t:) (AOl (7.t — 0))2 -1
R <[1 ' V(ti)} {1 V@) (1 NI - 0)AY, (7,t; — 0))} )

Tgtigt

%/ (R‘l(o)ﬁ(o) —Q(a)[(A (o))t — D‘l(U)D do. (5.64)

T

20) In the classk;® = {H}; G} of the form (5.55) the property (5.42) takes place
and

19w (), )] = (1/2) 3 I [1+ (3(t)/V ()]

Tt <t

T3

t h o 01 T,0 2
[ s esies -2 mm o))+ ©

T

Proof. Fort,, <t < tm,41 using(6.10)* and (5.48) in (5.47), we obtain

drf[)/ dt = (1/2) (R ()h(1) - Q) [(A° ()™ = D' (1] ). (5.66)

Then, (5.64) arises from (5.51), (5.66). The usétmf2)* in (5.50) gives

19 1] = 12, o]+ (1/2) 10 [1+ (3(tm)/V (tm) | (5.67)
Then, (5.65) arises from (5.49), (5.67).

Assume that a continuous channel is the transmission channel with memory, i.e.,
h(-) € H;. Let us consider the efficiency of discrete transmission with memory in re-
lation to discrete transmission with lag under optimal method of transmission, denoting
the mean square errors reproduction of signal for these two cag’§(by;) andﬁo(tm),
respectively. As the efficiency measure taken the vajie) = A%(¢)/ AO(t).

REMARK 9. Since for case optimal method of transmission under the energy limitations
(6.3)* in the channels with memory only current values of the progesse transmitted,
then according to Remafk channels with memory and without memory are equivalent.

Let us denote

t=t—7, b(t)= E()/R() Satm) = §(tm)/V (tm),
pri(r.t) = (A%, (r, )" /A (1) AY, (7, 1). (5.68)
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It is obvious that the value* is the value of the time lag).(¢t) and dq(t,,) are the
signal/noise ratios with respect to the intensity in continuous and discrete channels,
psi(T,t) is the square of correlation coefficient betweght) = z; — p°(¢) and
@o(r,t) = . — u°(7,t). Let us examine a particular case, when

F(t)=—a, a>0, h(t)=h, §(tm) =g, Rt) =R, V(tm) =V, (5.69)

i.e., the process; is Ornstein—Uhlenbeck process (Dyonetral., 2000; Dyominet al.,
2003a, item 5), and the transmission channels are stationary with the parameters inde-
pendent on time.

Itis assumed: a) the point of tintg, is the first moment of transmission in the discrete
channel; b) the point of time is sufficiently large in order that the solution to differential
equation forA°(¢) under conditions (5.69) on the intervale [0, 7] attain stationary
valueA%(7) = A% = const.

PropPosITIONL. 1°) In the general case
—1
e (7otm) = [1+ altw) (1 = pri(rtm = 0))| (5.70)

2%) Under conditions (5.69)

er(#) = [1+8a(1 = ppi))] ", (5.71)
pri(t”) = {ﬁ + (1 - ﬁ) exp{2(a + 50)25*}} . (5.72)

3%) Letes(0) = limeg(t*) ast* | 0 andes(oo) = limes(t*) ast* | oo. Then,
e¢(t*) is monotone decreasing function ©ffrom the value: ;(0) = 1 up to the value
ef(00) = (1+d4)" "

Proof. Formula (5.70) follows from (5.12) an@.12)* taking into account (5.68). The
solutions of 6.10)*, (5.15), (5.54) forA°(¢), A, (7,t), AY, (7, t) with the initial condi-
tions A%(7), AY, (7, 7) = A%7), AY, (7, 7) = A%(7) under conditions (5.69) are given
by

A%t) = [Q/(2a+6.)] + (AO(T) — [Q/(2a+ 5,;)]) exp{ — (2a+6.)(t —7)},
A81 (r,t) = AO(T) exp { —(a+d:)(t— T)}, (5.73)
A?l(T,t) = AO(T) (1 — [(56/2(a+5c)} [1 — exp{ —2(a+d.)(t — 7‘)}})

Sincet > 7, in view of the assumption b) we have (t) = A(7) = AY = Q/(2a +4..).

Then, formula (5.72) arises from (5.68), (5.73) and formula (5.71) arises from (5.70)
taking into account (5.72). The Propes) obviously follows from (5.71), (5.72).
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We consider the extrapolation receptionder optimal manner of transmission de-
termined by Theorems*, 5 and Corollary 4, when the future valug of process; is
predicted in the form of estimat€ (¢, s) = M {x,|(z°)§, (n°)5*} with mean-root-square
error (A1(t, 5))° = M{[zs — puO(t, s)]2}. Then,e, = (A (tn, 5))° /(A (£, 5))0 is
efficiency of discrete transmission with memory relative to discrete transmission with lag
under the extrapolation reception. Let ugdatuce the square of corresponding correla-
tion coefficients similar t;(r, t)

LAk )F _ [l
o) = a0 B aangae G
where (A1) = M{PWRE )L (Bt = M DR ),

ﬂo(ta S) =Ts — ,uo(ta S)'

PrRoPOSITION2. On coding functiona{6.5)* underh(-) € H; in the case of extrapo-
lation reception the decoding (s, t), the decoding errofA'l (¢, s))? and (A} (t, s))°,
(Al(7,t,5))? on the intervals,, <t < t,,+1 are defined by the equations

di 10, 5) = RV () [R(1)/A°(1)] V2 (ALt 5))° d2?, (5.75)
d(AM(1,5))°/ dbt = —3e(1) (A1) [(Ad(t, )], (5.76)
d(Ab(t )/ dt = [F(t) + Q) (A1) " = au(n)] (ab(t. )", (5.77)
d(AL(r,1,5))°/ dt = —5o(£) (A(£) " A, (7. £) (A (1. 9)) (5.78)

with the initial conditions on coding functioné.6)* underg(-) € G

1 (tm 8) = 10ty — 0,'8)

+(Db(tm = 0,9) " [3(tm) /A (b = O)] [V () + ()] 0 (bm), (5.79)
(AT (s ))° = [+ altu)] ™ [T+ altimn) (1 = preltin = 0,5))]

x (At — 0, 9))°, (5.80)
(At 9)° = [1 4 Sa(tm)] " (Ad(tm — 0,5))°, (5.81)
(AL (7t 9))° = [1+ 8a(tm)]

t
X |:1 + 5d(tm)(1 - [pfi(Tv tm — 0)pfe(ﬁm -0, 5)/pie(7_7 tm =0, 8)] 1/2):|
x (AL(7,tm — 0,5))°, (5.82)

and with the initial conditions onoding functonal (5.6) undey(-) € G}

HO (b, 8) = 1 (bm = 0,8
(ATt = 0,8)) [§(Em) /A (7t — 0)]

v

1/2
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<[V (tm) + §(tm)] 70 (tm) (5.83)
(A" (t, 8))° = [1 + 8a(tm)] ™ [1 4 8a(tm) (1 = pie(Ttm — 0, s))}
x (A (£, — 0,5))°, (5.84)

(At $))° = [1+ Baltn)]
‘ [1 o+ Galtm) (1= [05:(7,tm = 0)pic(s tin — 0,5)/ pgeltm — 0, ”2)]

x (A (tm = 0,5))°, (5.85)

(AL(T,tn, )% = [1 4 8a(tm)] ™ (AL(T,tm — 0,5))". (5.86)
Proof. If given{h(-);g(-)} € Ki = {H;; Gi} of the form(6.4)* according to Corollary 2
in (Dyomin et al., 1997) u(t,s) = M{xs|z6, 5}, v (8, s) = M{a(t, s)%|26, 75"}
Yolt:s) = M{a@)alt, s)l=h,mg't vilrt,s) = M{a(r, t)ilt, s)|z5,n5"}, where
fit,s) = x5 — p(t, s), i(t) = x¢ — p(t), fi(7,t) = 2r — p(7,1), p(t) = M{we|z6, 05"},
w(r,t) = M{z.|z{, "} on the intervals,,, <t < t,,41 are defined by the equations

dy p(t,s) = R71(t) [Ho(t, z)'y(l)(t, s) + Hy(t,2)vi(T,t, s)] dz,

dy!(t,s)/dt = —R7(t) [Ho(t 275 (t,8) + Hy(t, 2)7i (7, 1, s)]Q,

d% (t,)/dt = [F(t) + Q(t)y ™ ()] (t, s)

L) [Ho(t, ) (1) +H1(t 2)y01(7,t)]
[Ho(t 2)70( 78) + Hy(t, 2)7i (7., )],

d% (1,t,8)/dt = ( )[Ho(t, 2)y01(7, t) + Hi(t, 2)y11 (7, t)]
[Ho(t Z)’YO (t, S) + Hi(t, 2)711(7-7 t, 3)] )
dz; = dz; — [h(t, 2) + Ho(t, 2)u(t) + Hi(t, 2)p(7, t)] dt, (5.87)
with initial conditions

M(tm, S) = ,Lt(tm - 07 S)
+ [Go(tm; Z)'Yé (tm -0, 3) + Gy (tma z)’Yll (Ta tm — 0, 3)] W_l(tma Z)ﬁ(tm)a
Tty s) =7 (tm — 0, 5)

—[Go(tm, )’Yo( 0,8) + Gl 27 (st — 0,8)] 2
Vo (tms 8) =Yg (tm — 0,8) — [Go(tm, ) (tm —0)+G1(t ,2)701(7-1& )]
X [Go(tm, 2)75 (tm — 0, 8) + G1(tm, 2)71 (T, tm — 0,8)|W

N (Totms 8) = 1 (T, tm — 0,5)
—[Go(tm, 2)701 (T, tm — 0) 4+ G1(tm, 2)711 (T, tm — 0)]
X [GO(tma )'70( = 0,8) + Gi(tm )711(73 tm — 0, 3)]W_1(tma z),
(tm) = n(tm) — [9( ms 2) + Go(tm, 2)pi(tm — 0) + G1 (i, 2) (T, tin — O)L
W (tm,z) = V(tm) + Gi(tm, 2)7(tm — 0) + Gi(tm, 2)711(7, tm — 0)
+2Go(tm, 2)G1(tm, 2)701 (T, tm — 0). (5.88)
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The use ofh%(-) in the form (6.5)* into (5.87) brings us to (5.75)—(5.78). Usigd(-)
in the form (6.6)*, and then, in the form (5.6) into (5.88), we obtain (5.79)—(5.82) and
(5.83)—(5.86).

REMARK 10. Formulad6.12)* and (5.12) can be represented in the form
A(tm) = [1+ daltm)] At — 0), (5.89)
A%(tyn) = [+ batm)] ™ [T+ Baltin) (1 = pgi(7, b — 0)) | A" (1 — 0). (5.90)
For s = t, we havep®(t,s) = u°t), (AL(t,$))° = (ANt s)° = A1),
(AY(7,t,8))Y = AY (1, 1), pre(t, 8) = 1, pie(T, t, s) = pyi(7,t). Then, formulae (5.79),
(5.80), (5.83), (5.84) have the for(d.11)*, (5.89), (5.11), (5.90), respectively. This re-

sult is explained by the fact that far = ¢ extrapolation reception is changing over to
filtering reception.

PropPoOsITION3. 1°) In the general case
ee(ritmss) = [148altm) (1= preltm — 0,5)) ]
—1
X [1 + 8a(tm) (1 = pic(T tm — 0, s))} . (5.91)

2%) Suppose thal' = s — t is value of time interval of extrapolation. Then, under
conditions (5.69)

eelt",T) = 1+ 6a(1 = prelT))| |1+ 8a(1 = piclt”, T))] - (5.92)
pic(t™,T) = pgi(t")pse(T), (5.93)
pre(T) = {1 + (1 + (0c/2a)) (exp{2aT} — 1)} o (5.94)

wherep;(t*) determined by Proposition 1.

3%) Lete (0, T) = lime.(t*,T) ast* | 0 ande. (0o, T) = lime.(t*,T) ast* | .
Then,e.(t*, T) is monotone decreasing functionffrom the values.(0,7) = 1 up to
the values. (0o, T) = (1 + 8q) 1 + da(1 — pre(T))].

4%) Lete (t*,0) = lime.(t*,T) asT | 0 ande.(t*,00) = lime.(t*,T) asT | oc.
Then,e.(t*,T') is monotone increasing function &ffrom the values.(t*,0) = e7(t*)
of the form (5.71) up to the valug (t*, 00) = 1.

Proof. Formula (5.91) follows from (5.74), (5.80), (5.84). The solutions of (5.76)—(5.78)
with the initial conditiong Al (s, s))? = A%(s), (A}(s,5))? = A%(s), (A}(1,s,s)) =
A, (7, s) under conditions (5.69) are given by

(An(t, s))o = Ao(t) exp{ —2a(s — t)} +(Q/2a) [1 —exp{—2a(s — t)}],

(Ap(t,s)” = A%t exp { —a(s — )},
(AL(1,t,5) = A%(r)exp { — (a+ 6:)(t — 7) } exp{—a(s — t)}. (5.95)
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Then, analogously to (5.71), (5.72) formulae (5.92)—(5.94) arise from (5.74), (5.91),
(5.95). The properties?), 4°) obviously follow from (5.71), (5.72), (5.92)—(5.94).

As measures of information efficiency fdre cases of filtering and extrapolation re-
ceptions the valued ; = AT, [z4,,; (2°)5" 1% (tm)] — AL, [z, (20)5,7° (t,,)] and
A, = ATt [z (205, n° (tn)] — ALt [zg; (20)5, 1% (£.,)] are taken.

PrRoPOSITION4. 1°) In the general case

Ap(7,tm) = (1/2) [+ baltm) (1= psi(7, 1w — 0))] },
AJﬂth):(UQﬂn{p4wM@mxlfpwﬁJmAWLﬂﬂ

X[+ 0ultm) (1= preltm = 0,5)] ' }. (5.96)

2%) Under conditions (5.69)

Ap(t) = (/2 { [T+ 61 = ppslt)] |-
At T) = (1/2) I { [1+8a(1 = pie (t, TN [1 + 641 = pre(T))] '}, (5.97)

wherep;(t*), pre(T), pie(t*,T) determined by Propositions 1 and 3.

3%) Let: Af(0) = lim A¢(t*) andA.(0,T) = lim A (t*,T) ast* | 0; Af(oo) =
lim Ay (t*) andA. (00, T) = lim A, (t*,T) ast* 1 co. Then,Af(t*) andA.(t*,T) are
monotone increasing functions of from the valueA¢(0) = 0 andA.(0,7") = O up to
the valuesA f(co) = (1/2) In{(1 + dq) } andAc (oo, T') = (1/2) In{(1 + da)[1 + da(1 —
pre(T)I7).

4%) Let Ao (t*,0) = im A (t*,T) asT | 0 andA.(t*,00) = im A (t*,T) asT |
oo. Then,A.(t*,T) is monotone decreasing function 6ffrom the valueA.(¢*,0) =
Ay (t*) up to the valuel . (t*, co) = 0.

Proof. Formulae (5.96) arise frortt.34)*, (4.36)*, (5.80), (5.84), (5.89), (5.90). For-
mulae (5.97) and Propertig8), 4°) arise from (5.96) taking into account (5.72), (5.93),
(5.94). In the case of = ¢t andT = 0, when extrapolation reception is changing over
to filtering reception, the formulae fa&x. (7, ¢,,,, s) andA.(¢t*, T') pass into formulae for
Ay (T, tm) andAy(t*) (see Remark 10).

Let us comment on the results obtained for cases, when the conditions (5.69) and
assumption b) take place.

1. The efficiency of discrete channels with and without memory (see Remark 9) rel-
atively the channel with lag is defined by the ratios signal/noise by the intensity in the
continuous channél., in the discrete channé), and by the square of correlation coeffi-
cientsp i (t*), pre(T), pie (t*, T') that depend on the value of time l&igwithin the signal
transmissione; in the discrete channel with lag and the value of the time extrapolation
intervalT" by the extrapolation reception.
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2. Equalities ¢(0) = ¢.(0,T) = 1andA(0) = A.(0,T) = 0 are obvious, since the
channel with lag is changing over to channel without lagby- 0. Monotone decrease
ef(t*), ec(t*,T) and monotone increask;(t*), A.(t*,T) of t* are explained by the
fact that whilet* is increasing, the statistic dependencies betweesmdz;, , . andz,
are decreasing. This effect lead to decrease of information amount about the gyfrent
and futurer,; values of the process, which is contained in the past valute transmitted
in the channel with lag.

3. Equalitiess.(t*,0) = e¢(t*) and A (t*,0) = A;(t*) are explained by the fact
that if T = 0 then an extrapolation reception is changing over to filtering reception.
Monotone increase. (t*,T') up to unity and monotone decreaig(t*, T') up to zero by
the increasing of" are explained by decreasing statistic dependencies up to zero between
xs andx:, , s andx,, that results in equivalence of discrete channels with memory and
lag.

4. The influence of a continuous transmissichannel into discrete channels is be-
ing implemented by a paramet&r. Absence of continuous transmission corresponds to
the case). = 0, and ideal (noiseless) continuous transmission corresponds to the case
e = oo. Letlimes(t*) = ef(t*), lime (t*,T) = 2(t*,T), im Ay (t*) = AG(t),
mA(t*,T) = AXNt*,T) asé. | 0, andlimes(t*) = P (t*), lime (t*,T) =
e (t", 1), im Ap(t") = AP(t"), im Ac(t*, T) = A (t*,T) asd. T oo. From (5.72),
(5.93), (5.94) follows that by, = 0

prilt") = put") = exp{—2at"},  pye(T) = pl(T) = exp{—2aT},
pie(t*, T) = p2,(°,T) = exp { — 2a(t* + 1)}, (5.98)

i.e., with the absence of continuous observationspy., pie are changing over to square
of correlation coefficients between the appropriate values of the pregebbus ifo. =
0 then Propositions 1, 3, 4 take place, where instead of (5.72),(5.93), (5.94), formulae
(5.98), are used. Analogously;; = pfe = pie = 0 by d. = oo. Then, from (5.71),
(5.92), (5.97) follows that (t*) = (1 +da)~" < e (t*), AP (") = (1/2) In{(1 +
da)} > Ap(t), e, T) = 1, AX(t*,T) = 0, i.e., the ideal continuous channel
with a noiseless feedback increases discobtnnel efficiency with memory relatively
the channel with lag within filtering recepticand makes them equivalent within the
extrapolation transmission.

5. Letes, (t*) = limeyp(t*), ¢, (t*,T) = lime (t*,T), Ag (t*) = lm A(t*),
Ay (t*,T) = Im A (t*,T) asdq | 0, andey (t*) = limes(t*), e (t*,T) =
lime.(t*,T), Ay (t*) = UmA(t*), A (" T) = ImA(t*,T) asdy 1 oo.
From Propositions 1, 3, 4 it follows that, (t*) = 1, Ay (t*) = 0, ., (t*,T) = 1,
A, (t*,T) = 0, i.e., by unlimited increasing noise intensity relatively the signal in-
tensity in discrete channels they become equivalent, since both of them no contain in-
formation about the process. In a similar mannee;_(t*) = 0, Ay (t*) = oo,
€eoo (t*’ T)= [1 - pfe(T)][l - pie(t*vT)]_l < Ee(t*’ 1), AV (t*a T)= (1/2) 1n{[1 -
pie(t, DL — pre(T)] 71} > AL(t*,T), that is ideal (noiseless) discrete channel in-
creases efficiency of the discrete channel with memory relatively to the channel with lag,
moreover, in the case of filtery reception — unrestrictedly.
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6. Supposey. (tm) = A%(tn)/ (A (tm, )0, Alte(tm) = I, []— It [] character-
ize filtering reception efficiency relatively &xtrapolation reception in discrete channels.
Then,

efeltm) = [1+6a(1 — pre(T)] 'efe(T),

1
Alpe(tm) = 510 { [1+ 041 = pre(T))] } + Alo(T) (5.99)
in the case of discrete channel with memory and

efeltm) = [L46a(1 — pps(t*))] [1 + 6a(1 — pic(t*,T))] “le(D),

Alfe(tm) = %m {4040 = pic(", TN [+ 841 = pra(e))] '}
+AT;(T) (5.100)

in the case of discrete channel with lag, where.(T) = [(1 + (6./2a)) —
(8c/2a) exp{—2aT}]"! and Al;.(T) = (1/2)1n{5;61(T)} are the characteristics of
filtering reception efficiency relatively éapolation reception in a continuous channel.
Formulas (5.99), (5.100) follow from the previous results. It is obviousdpatl’) < 1,
Al (T) > 0,epe(tm) < epe(T) <1, Alye(tm) > Al (T) > 0, that is a filtering re-
ception is more efficient then extrapolaticeception one both in continuous and discrete
transmission channels.

6. Conclusion

The results obtained and (Dyoméh al., 2003a) allow us to point out some problems
which are open for future investigations.
1. The finding of Shannon information amount in the joint filtering, extrapolation

and interpolation problem of stochastic processes by continuous-discrete time memory
observations and the investigation of this information amount structure. The consideration

of these problems for cases of moving memory and moving extrapolation on basis of
(Dyominet al., 2000).
2. The investigation of optimal transmission problems of stochastic processes by

memory continuous-discrete channels without the silent feedback and the comparison

of results to be obtained with the given.
3. The investigation of optimal transmission problems of stochastic processes by

memory continuous-discrete channels both with and without the feedback when gen-
eral energy of message is distributed among the signals which transmit current and past

values of the process.
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Apie Senono informacijos kiekio atsitiktiniu procesy bendrame
filtracijos ir interpoliacijos uzdavinyje strukt ura tolydziais-diskreCiais
laiko momentais

Nikolas DYOMIN, Irina SAFRONOVA, Svetlana ROZHKOVA

Naudojantis darbo (Dyomiret al., 2003a) rezultatais, Siame straipsnyje yra nagama
Senono informacijosikkio atsitiktiniy proces bendrame filtracijos ir interpoliacijos uZdavinyje
strukiura. Tiriamas atvejis, kai viena dalis kompodinyra stebima diski@ais laiko momentais,

o kita dalis — tolydZiu laiku. Specialiai proagklasei yra sprendZiamas optimalaus perdavimo
kanalais su glavimu uzdavinys, o taip pat tiriamas @mimo filtracijos ir ekstrapoliacijos efek-
tyvumas, kai perduodama kanalais su atmintimi arbagtamimu.



