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Abstract. A temporal logic of belief and actiond(BA) is considered. Th&LBA allows us to
express informational and dynamic properties of computational agents. The considered fragment
of TLBAallows one: (1) to present a deduction-based structured decision procedure; (2) to separate
a decision procedure fao-called induction-free formulasid (3) to use only logical axioms for

such formulas. The main new technical tool of the presented decision procedure is separation rules
which incorporate traditional rules for the temporal operator “next”, belief modalities and action
constants.
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1. Introduction

Design of systems that are required to perform high-level management and control tasks
in complex dynamic environments is becoming of increasing commercial importance.
Such systems include the management asmdrol of air traffic systems, telecommuni-
cations networks, business processes, spdtieles, medical services. It is now widely
accepted that computational agetechnology will have a key role to play in the devel-
opment of the twenty-first century computer systems. The computational agents are often
called agational (or intelligen)) agentsbecause they make good decisions about what to
do (Wooldridge, 2000; Wooldridge and Jennings, 1995).

There has recently been mucleérest in the use of mathetiwal logic fordeveloping
formal theories of such agents. Much of thigdrest arises from the fact that rational
agents are increasingly being recognized as an important concept in computer science,
software engineering, and artificial inteligce. It is recognized that logical proof meth-
ods are required for: (1) reasoning within the rational agents; (2) verification of agent-
based systems with respect to the specification; (3) studying the properties of rational
agents formalism.

One of the main tasks to solve these problems is to find decision procedures allowing
us to tell in an automatic way whether the given specifications are provable (or true)
in some logical formalism. A popular approach to formal methods in the investigation
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of properties of computer systems is concerned with model-checking (see, e.g., Clark
et al, 2000). Unfortunately, the model-checliapproach runs into serious difficulties
when we consider complex agent-based pataer systems. Therefore, along with the
model-checking approach, a deductive apgio(based on logical calculi) is widely used.
Deduction-based decision procedures will not only tell us whether a given specification is
provable (true) or not, but also give the proof of the specification whenever it is provable.
The deductive approach is more promising in the case of first-order agent-based logics.

The best known logical theories of rational agentsiafe!/ logics (Rao and Georgeff,
1991) andK’ ARO logics (Meyer and van der Hoek, 1995).BY 1 logics, each rational
agentis viewed as having three mental attitudes: belief (the main comporghtiofog-
ics), desire, and intention. The DI logics (for Belief, Desire, and Intention) are fusion
of various propositional temporkdgics and propositional nitirmodal logics expressing
the properties of the mental attitudes. Thel RO logics (for Knowledge, Abilities, Re-
sults, and Opportunities) focus on the dynesif mental states: how actions can change
the agents knowledge (beliefs), desires, and so on ATARO logics are a combination
of propositional dynmic logic (Harelet al., 2000), logics of knowledge and commit-
ment logics (Meyer and van der Hoek, 1995). Thiel RO logics do not have explicit
temporal modalities and semantically are more complex & logics. In (Fisher and
Wooldridge, 1997) it is presented a powerful concurrghbET AT EM system, based
on the first-order temporal logic with multi-agt belief operators. In (Wooldridge, 2000)
it is described a rich logic ORA (Logic of Rational Agents), based on a three-sorted
first-order logic,BDI logic, and a dynamic logic. Unfortunately, tdé ET AT EM and
LORA are neither complete nor declila. Decision procedures fd@ DI logics, based
on tableau-like calculi, are presented in (Rao and Georgeff, 1998). A different, more ob-
vious, decision procedure (based on sequent-like calculus) for a branBtiglogic
is presented in (Nide and Tanaka, 2002). €alol-based decision procedures for proposi-
tional temporal logics of knowledge and belief are described in (Wooldetige 1998).

In this paper, a temporal logic of belief and acti@(B A) is considered. Th& LB A
is a fusion of the three logics: Computational Tree Lodid (L) (Emerson, 1990), mul-
timodal logic K D45,, for belief modalities (Woolddge, 2000), and propositional dy-
namic logic (Harekt al, 2000). Since the belief modalities are the main modalities of
BDI logics, the logicl' L B A can be considered as a core of the propositional fragment
of the LOR A logic (Wooldridge, 2000).

The T'LBA allows us to express informationah@ dynamic properties of rational
agents. The aim of this paper is to present a deduction-based decision procedure for
TLBA. The presented decision procedure is based on sequent-like calculus. For sim-
plicity, we considerR-sequents of' LB A (Section 3). Thek-sequents of 'L B A allow
us: 1) to present the proposed procedure in structured way; 2) to separate a decision proce-
dure for so-called induction-free sequents and 3) to use only logical axioms (in leaves of
derivations) for induction-free sequents. In the general case, we used, as in (Pliuskevi
1993, 1994, 1996, 1998, 2001; Nide and Tanaka, 2002; PliuSkevand Pliuskediere,
2003), non-logical axioms along with the logical ones. But these non-logical axioms are
captured here in a simpler, more evident anodre structured way. Moreover, since the
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TLBA contains a propositional dymac logic, the presented decision algorithm (in a
special case) can be used as new decision algorithms for the multi-iidd4b,, and
for the considered fragment a propositional dynamic logic.

The paper is organized as follows. In Section 2, the components @fili#A are de-
scribed. In Section 3, the language of fie B A is presented. In Section 4, the Gentzen-
like decision procedure for a propositional loggs briefly recalled. In Section 5, auxiliary
tools for the presented decision procedure are described. In Sections 6 and 7, decision al-
gorithms for so-called induction-fre@-sequents and arbitrady-sequents are presented.
In Section 8, conclusions and further investigations are briefly discussed.

2. Components ofTLBA

TheT L BA consists of three components: (1) logical, (2) informational and (3) dynamic.

The logical componeraf T'LB A consists of the classical propositional logic with
usual logical operators, A, V, —.

The informational componewif 7L BA consists of the multi-modal logi& D45,,
(doxastic logic or wealkss,,) allowing us to represent an agent’s beliefs and contain-
ing belief operatorBel(i), i € {1,...,k} (¢ > 1), i is a constant that stands for an
agent. The semantics of multi-modal logiksD45,, (and other normal modal logics) is
based on Hintikka—Kripke (or possible wosldsemantics using énotion of a reachabil-
ity (accessibility) relation (Fitting, 1993). Theripke structure consists of a non-empty
set whose elements are called worlds and binary relations. These relations define which
worlds are considered accessible from othierld. As in (Wooldridge, 2000) we assume
that the reachability relation of belief operators distributive, transitive, serial, and Eu-
clidean. Therefore the formulaBel(i)(P D Q) A Bel(i)P D Bel(i)Q, Bel(i)P D
Bel(i)Bel(i) P, Bel(i)P D —Bel(i)—~P, and—Bel(i)P D Bel(i)-Bel(i)P (express-
ing, correspondingly, the distributive, transitive, serial and Euclidean properties of the
reachability relation) are valid i D45,,. The multi-modal logicK D45, allows us to
compose belief modalities of different agents. This property permits us to express com-
plex informational aspects about agent-based systems. Using theldgis,,, we get
information of the following form: agents have belief about themselves, other agents and
the environment. The belief modalities are the main modalities in the theory and practice
of rational agents (Wooldridge, 2000). Other, simpler modal operators are desire and in-
tention operators (Wooldridge, 2000) satisfying only distributive and serial properties of
the reachability relation.

The dynamic componeot T'L B A consists of two parts: a temporal part and an agent
part.

The temporal parbf TLBA consists of a Computational Tree Logi€T L), often
regarded as the simplest useful branching-time temporal logic (Emerson, 1990). The time
is discrete and branching. THi&l'L contains operators which operate the paths that are
possible from a given state. In the linear-time temporal logic, operators are provided for
describing events along a single computation path. The temporal comporiERtHi
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allows us to specify the temporal properties of an agent-based system: how the state of
an agent and the environment changes over time.

The agent parbf T'L B A consists of a propositional non-deterministic dynamic logic
(PDL) (Harelet al,, 2000). Instead of elementary programs (as in the traditibxial),
we consider action constants, representing actions or actions sequences and interpreted
as an arbitrary binary relation, and satisfying the simplest multi-modal lggi¢Fitting,
1993). ThePDL allows us to represent the actions (or actions sequences) that agents
perform, and the effects of these actions. Usinf L operators we can get composed
actions. The main operatictis often called a “star” operation and ti&D L without this
operation is called a star-freeD L.

3. Language ofTLBA

The language of LB A contains: a set of pppositional symbolsP, Py, P, ..., Q,
Q1, Q2, ... (it is assumed that all propositional shuis are flexible, i.e., their values
change in time); a set of agent constants, i, .. ., J, j1,J2,- - - @1,02,...,b1,b2, . ..,
c1,C2y ... (4, 4,00, 01, a, b, € {1,...,k}); a set of belief modalitieBel(i) (i €
{1,...,k}, k > 1); temporal operatorsD (“next”), U (“until”), path quantifiersv (“for
each path”)3 (“there exists a path”); a set of action constantsas, ..., 51, 5, .. .;
action constructors: (“composition”),U (“non-deterministic choice”)s (“non-determi-
nistic iteration” or “star”),? (“test”); true (logical constant for truth); logical operators:
D (implication), A (conjunction),v (disjunction),~ (negation).

Formulas and actions df LB A are defined inductively as follows: every proposi-
tional symbol and truth constanhtue are formulas; any action constant is an action; if
a andg are actions, thefu o ), (a U 8), («*) are actions; ifA, B are formulas, then
A D B, ANB, AV B, ~(A) are formulas; ifP is a formula containing only proposi-
tional and logical symbols, theR? is an action; ifi is an agent constand, is a formula,
thenBel(i) A is a formula; ifA, B are formulas( is path quantifier@ € {V, 3}), then
QO A andQ(AU B) are formulas. The formuld is a logical one ifA contains only
logical and propositional symbols. Belief mditias can be nested. For example, formula
Bel(i) Bel(j)P, whereP is a proposition “John is a good programmer”, means “agent
believes that agentbelieves that John is a good programmer”.

The logical symbols, A, V, — have their usual meaning. The operatoris the
next time operator; the formulO B (3 O B) intuitively means thaiB is true in eve-
ry (in some, respectively)mmediate successor of the current state. It is clear that
JOB = =VYO-B andVO B = —-30-B. The operatortU meansuntil, the formula
VY(AUB)(3(AUB)) means that, for every path (for some path)s true until B is true.
The monadic modalities) (“now or some time in future”) andd (“now and always
in future”) are defined using the modality “until) 0 A = Q(trueUA), Q € {V¥,3},
VO A = -3 —A. Since the invariant rules (see Section 7) for the temporal modglity
(“unless”) and action modality (“star”) have a similar shape, instead modality we
shall use modalityVV (“unless” or “weak until”). The formula&/(AWB) (3(AWB))
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means that, for every path (for some path), eithés true until B is true, or elseA is
always true, i.e. Q(AWB) = Q(AUB) vV QO A; moreover) 0 A = Q(A W-true).

Therefore in formulas we consider three types of modalities, namely, temporal modal-
ities: O and W; belief modalities:Bel(i), and action modalitiegy;].

The path quantifiew (3) expresses inevitability (agjwnal, correspondingly) tempo-
ral properties. For example, the formulzel(:)V(P, WP,) means: “agent believes
that inevitably P; is true until P, is true, or P; is inevitably true” and the formula
Bel(i)3(P, WP,) means: “agent believes that optionally?; is true until P; is true,
or P is optionally true”.

Now, let us consider the action componenfdf B A. The formulga) A means: “eve-
ry possible execution of the actienleads to a situation in whicll is true”. The com-
pound actions have the following meaning:o 3 — “do « followed by 8”; o U 3 —
“either « or 8, non-deterministically”a* — “repeatx a finite, but non-deterministically”;

A? — “proceed if A true, else fail”. The Algol-like program constructions ‘i then
« elses” and “while P do «” can be expressed using the action operators as follows,
(P?oa)U (=P?03)and((P?o«) U (~P7?))*, respectively.

Together with other operators, the actmperators allow us to express informational
and dynamic properties of rational agents. For example, the formulBel(i)[a*]|P
(wherea means the action “extract an importanformation from a company” an@
means “get a lot of money”) means “inevitably always agélieves that, after repeated
extraction of an important information from a company more than once he gets a lot of
money”.

The temporal operators and the action operator “star” allow us to express so-called
induction-like properties. Namely:

ANQO(A D OA) D QuA (induction-like property of the temporal operator
“always”), Q € {V,3};

CAQO((CA-B) D (AN OC)) D Q(AWB) (induction-like property of the
temporal operator “unless™y) € {V, 3};

AN[a*] (A D [a]A) D [«*]A (induction-like property of the action operator “star”).

The first two operators express the main property of the temporal operators “always”
and “unless”; the third one expresses the main property of the action operator “star”.

The semantics of temporal operatars (“always”), W (“unless”), and the action
operatork (“star”) explicitly expresses the infinitary rules for these operators (see, e.g.,
Emerson, 1990; Kawai, 1987; Haetl al., 2000; PliusSkewiius, 1996).

{F - AaQOkA}kEw
' - AQuA

{I' = A, Wi trew
T = A, QAWB)

(= DOw),

(= W),

(0= Aol Aen
I — A a*]A ©r




384 R. Pliuskewius, A. Pliuskewviene

wherew = {0,1,...}; OFA = A(if k =0), OFA = OOF 1A (ifk > 1); Wy =
AVB; Wy = BV(AAQO Wy_1) (k = 1);[a]*A = A(if k = 0), [a]* A = [a] [~ 1]A
(if k>1);,Q € {Vv,3}.

Infinitary rules are widely used in the logics of programs and agent-based logics.
Instead of formulas we consider sequents, i.e., formal expressgions., A, —
By,...,B,, (WhereA;,..., A, (B, ..., B,)isaset of formulas) which are interpreted

as the formula\}’_; A; O VX, B;, 4,5 > 0.

To describe the considered fragmentiof B A, let us recall the notions of positive
and negative occurrences (see, e.g., Wang, 1964).

A formula (or some symbol) occupmsitivelyin some formulaB if it appears within
the scope of no negation sign or in the scope of an even number of the negation sign, once
all the occurrences ofl O C have been replaced byA v C; in the opposite case, the
formula (symbol) occuraegativelyin B. For a sequent = A,,..., A, — B1,...,Bn
positive and negative occurrences astedmined just like for the formulal_; 4; D
Vi, B;.

ExXAMPLE 1. LetS = V(AW(BV C)) — 3(AWB),3(AWC), then the first (from
the left) occurrence of the symb®V and the occurrences of the symbulandV are
negative, two second occurrences of the symihband two occurrences of the symbbl
are positive.

A sequentS is an R-sequent, ifS satisfies the followingegularity condition: if for-
mulasQ(AWB) (Q € {V, 3}) and/or[a*] A occur negatively irb, thenA and B do not
contain positive occurrences of the temporal oper&band positive occurrences of the
action operatox (“star”), and action constants.

EXAMPLE 2. LetS; be a sequent obtained from the sequegfExample 1), taking in-
stead ofA, B, C the formulasBel(i), —Bel(j), and [«}] P, respectively; letSs be a
sequent obtained from the sequeh(Example 1), taking instead of, B, C' the for-
mulas—¥(P WQ), —Bel(j) and—[aj]P, correspondingly. Then the sequefitis an
R-sequent, but the sequesif is not anR-sequent.

4. Gentzen-like Decision Algorithm for a Propositional Logic

Gentzen has applied his sequent calculi in the decision problem to the classical and in-
tuitionistic propositional logic (Gentzer1934-35). The Gentzen algorithm was based
on his main theorem on normal form derivations. According to this theorem, all the se-
guents in the derivation of a given sequéittontain only some parts (subformulas) from
the sequen®, i.e., during the construction of derivations nothing new can be obtained.
Therefore bottom-up applying the rules of sequent calculus, the derivation must be termi-
nated. Gentzen'’s decision algorithm wagnoved in (Wang, 1964), exploiting a notion
of the invertible rule.

The rule(7) is called invertible in a sequent calculiisif the derivation inI of the
conclusion of(¢) implies the derivability in/ of each premise ofi). Let () be any rule.
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Usually (¢) is applied to get the conclusion @f) from the premises ofi). Sometimes it
is convenient to applyi) to get premises ofi) from the conclusion of:). In this case,
instead of “application of:)” we have a “bottom-up application @f)”. In case(:) is
invertible, the bottom-up application ¢f) preserves the derivability.

DEFINITION 1 (calculusGW). The calculugzW is defined by the following postulates.
Axiom:T', A — A, A.
The formulaA is called the main formula of the axiom.
The rules consist of traditional invertible rules of inference:

I''A— A B (=5) I - A A; F,B—>A(D )
I' - A, (ADB) ’ I(A>B)— A ’
F—)A,A;FHA,B( ) I'NA,B— A

I' - A (AAB) " T,(AAB) — A

(A=),

r—-AAB INA—-A; I''B— A
N NRVE T SALL (V =),
I' = A, (AV B) I'(AvB)— A
IA— A r—-AA
A28 ), Nt
I —-A-A r-A— A

From the shape of the rules of the cdi®iwe can see that each premise of some
rule (i) has less complexity (defined as the number of occurrences of logical symbols)
than the conclusion of the rulé)( Using this property, we can eliminate logical symbols
(elimination property of the calculusiW). Using the elimination property of the calculus
GW starting from a given sequeft we bottom-up apply the rules of the calcutt$l’
until in each branch we get an axiom or an “atohaxiom (having propositional symbols
as the main formulas of the axiom). In this cag&} + S (i.e., the sequent is derivable
in the calculusGW), or there exists a branch, a leaf of which contains no axioms. By
invertibility of the rules of calculu&W, in this casezW ¥ S. Therefore the termination
criterion of the decision procedure is rather simple: either in all the leaves we get axioms
(or atomic axioms) — positive criterion, or in a leaf of some branch we get a sequent which
is not an axiom.

Using induction on the hight of derivation, we can show (see, e.g., PliuSksyi
1990) that all the rules of the calculG8V are invertible.

EXAMPLE 3. (a) LetS = AV B — (BV A) A (B V —B), then by bottom-up applying
(from left to right) the rulgV —) and afterwards the rulgs- A), (— V), (— —), we get
four sequent$; = A — B,A;So = A,B— B;S35=B — B,A; S, =B,B — B,
which are axioms. Therefore the procedure terminates positively and w&jéet S.

(b) LetS = AV B — AA(BV-B), then by bottom-up applying (from left to right)
the rule(v —) and afterwards the rulgs— A), (— V), (— —), we get four sequents
S1=A— A, S =AB— B;S3 =B — A; Sy = B,B — B. The sequents’,

S», 54 are axioms, bub; is not an axiom. Therefore the process terminates negatively
and we geGW ¥ S.
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5. Some Auxiliary Tools of the Decision Algorithm for R-sequents

The decision algorithm presented here is a substantial extension of the Gentzen-Wang
algorithm, presented in the previous section. In this section, we present the main auxil-
iary tools of the decision algorithm fdR-sequents: separation and reduction rules, and
marked contraction rules. First we introduce some canonical formissequents.

An R-sequentS is a primary R-sequent, ifS = X, BT, VOII;,VWA1, [a4]9,
[@*]©1 — X3, BA,VOII,, VWA,, [Bk]V, [@*]©2, where for every (i € {1,2}) &,
is empty or consists of logical formula&§T'( BA) is empty or consists of formulas of
the shapeBel(ax)A, 1 < k < n (Bel(b;)B, 1 < j < m, correspondingly)y OII;
is empty or consists of formulas of the shape® A; VWA, is empty or consists of
formulas of the shape(AWB); [a,]2 ([8x]V) is empty or consists of formulas of the
shap€a,|A ([8k] M, correspondingly), where, and g, are action constanty*|O; is
empty or consists of formulas of the shapé] A, wherea is an action. AnR-sequent
S is areduced primarysequent ifS is a primary one not containingWA;, [«*]©;, but
I, A, I1;, ©, V may contain temporal operatd#’ and action operator.

Let us define reduction rules by means of which eRetequent can be reduced to a
set of primary and reduced primaRtsequents.

DEFINITION 2 (reduction rules). Reduction rules consist of the following rules:

¢ logical rules: all the rules of the calculGgV;
e temporal rules:

Ivo-4— A
r—-AJd0A

- AvVO-A

(=30), JOAT - A

(30 =),
A\/B,B\/QO(Q(AWB)),Fl — Al

QUAWB).T) = A, @W=),

wherel'; — A; contains positive occurrences &¥ (“unless”) or O (“next”),

I'—=AA B;I' - A,B,QO(Q(AWB))
I - A QAWB)

(_> QW)a

where@ € {V, 3};

AV B, Il -0
QAWB), 11 - ©

(WO 4’)5

wherell — © does not contain positive occurrences eith@r(“unless”) or O
(“next”);
e action rules:

' — A [a][g]A (= o) [a][B]A, T — A (0 =)
- A/JacflA ’ [0 BJA,T — A ’
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I' = A[a]4; T — A[F]A [a]A4, [B]A,T — A
T — A jaUg|A (=u), [@UBIAT — A

(U =),

rpP—AB - A,P;, BI' - A
T~ pn ) (7 =),
' - A [P?]B [P71B,T — A

' = AJAT — A o] [of]A
' — A a*])A

A, [a] [Oé*]A, Fl — Al (* )
, [O{*]A, ry — A1 ’

(= *)

wherel'; — A; contains positive occurrences:of“star”) or action constants,

All—©

ean—e )

wherell — © does not contain positive occurrences eith€istar”) or action
constants.

REMARK 1. (a) The temporal rules— 30), (3O —) correspond to the seman-
tic equivalent between the path quantifietlsD A = -V O-A. The temporal rules
(QW —), (— QW) correspond to the following semantic equivalent (see, e.g., Emer-
son, 1990 AVB)A(BVQ O (Q(AWB))) = Q(AWB) (where@ € {V,3}), and to the
sequential rules for the “unless” operator from (Nide and Tanaka, 2002). The action rules
(— %), (x —) correspond to the semantic equivalémt|A = A A [a] [a*]A (see, e.g.,
Harelet al., 2000). The other action rulés~ o), (o —), (— U), (U —), (—=7), (? —)
correspond (respectively) to the following semantic equivalent 5]A = [«o] [6]4;
[aUBlA = [a]A A [B]A; [P?]JA = P D A (see, e.g., Haradt al, 2000). The temporal
rule (W, —) (action rule(xo —)) corresponds to the case of the infinitary r(de W,,)
(rule (— =), respectively, whek = 0) (see Section 3).
(b) The bottom-up applications of the temporal rle 30O), (3O —) eliminate
occurrences of the path quantifier The bottom-up applications of the ru{éV, —)
(rule (xg —)) eliminate occurrences of the operator “unless” (“star”, correspondingly).
We can see the same effect in the left premise of the e W), (— x). The
bottom-up applications of the action rulges: o), (o —), (— U), (U =), (—=7), (? —)
eliminate the occurrences of the action operatots, 7, correspondingly.

From the shape of the primaig-sequent it is easy to see that bottom-up applying
logical rules, the rule$3 0 —), (— 3O) and action rules, except the rules for of the
“star” operator, eacR-sequent can be reduced to a set of primiarsequents. As follows
from the shape of reduced primaRtsequents bottom-uppalying reduction rules each
primary R-sequent can be reduced to a set of reduced prinkasgquents. For each
reduced primanyz-sequent the separation rules (see below) are bottom-up applied.

EXAMPLE 4. LetS = [af U ab]Py, 3O Py, (Bel(i)Ps V Bel(j)Py) — (Bel(i)Ps V
Bel(j)Ps), (P; D [as]Ps). Bottom-up applying logical rulesv —), (— V), (—D)
and the rules(3O0 —), (U —), we get two primaryR-sequents:S; = [af]Py,
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[OLS]Pl, Bel(i)Pg,P7 — YO, BSZ(Z)PE,, Bel(])Pg, [Oég]Pg and S, = [Oéﬂpl,
[a5] Py, Bel(j)Py, P; — Y O-=Py, Bel(i)Ps, Bel(j)Ps, [as]Ps. Bottom-up apply-
ing the rule (x —) to Sy, So we get two reduced primanRk-sequentsS; =
Pl, [Oél] [Oéﬂpl, Pl, [OLQ] [oz;]Pl, Bel(l)Pg, P7 — VO_'PQ, BSZ(Z)PE,, Bel(])Pg, [Oég]Pg
and S; = Pl, [Oél] [Oéﬂpl, Py, [OLQ] [OLS]Pl, Bel(j)P4,P7 — VOB, BSZ(Z)PE,,
Bel(j)PG, [O(g]Pg.

As pointed out in (Hudelmaier, 1996), one of rather effective techniques (instead of
traditional ones) for deciding the provability of sequentSif, is based otoop checking
(the same techniques is also usedAab45,,). Namely, if “essentially the same” sequent
occurs twice on a branch of a constructed deduction, then there is a shorter deduction with
the same end sequent which does not show this redundancy, and one may backtrack. This
loop checking requires quite involved ingphentation techniques. Therefore, contrary
to loop checking, we propose a so-calledp exclusior(for belief modalities) method.
The loop exclusion corresponds to the construction of a contraction-free sequent calculus
(see, e.g., Hudelmaier, 1996).

First, let us introduce the simple separation rules.

DEFINITION 3 (separationrulesSR;)). The separation ruld$ R;") are of the following
shape:

S
El, BF,VOHl, [Oéq]Q — EQ, BA,VOHQ, [61%]

wherel < I < 3, the conclusion of the rule$®;) is a reduced primarz-sequent, such
thatGW ¥ Y1 — 2o,

LetVOIl; =VOA;,...,VOA, (n>1)orvVOIl, = @, then

Sy =1I; — AY (1 < i < n),whered? € {2, A;} andA? = g if VOII, = @, and
A = A;if VOII, # 2.

Let [Bk]V = [61]V1, .., [Bn]lVa (n = 1); [ag]Q = [aa], - . ., [em] Qs (m > 0),
where[;]Q;,0 < j < m ([8;] Vi, 1 < i < n) consists of formulas of the shafig| B, ;
(of the shapés;| M, ;, respectively), moreovefy;]2; may be the empty word, then

Sy =) - M,; (1 <i<n,1<j<m,p>1),whereQ) = Qy, if a; = 3; and
Q? =g, if Qi 7& ﬁi or [Oéq]Q = .

S3 = BUy, T — BA,, AY, Bel(k)A°, whereA® € {@, A}, BA,, Bel(k)A° C
BA, BT, C BT, and BT',,,( BA,,) is empty or consists of the formulas of the shape
Bel(k)M.

The rule(SR3) (which corresponds non-invertible rule of Shwart’s (1989)) does not
reflect peculiarities of belief modalities, i.e., distributivity, transitivity, seriality, and Eu-
clidean properties, and it is directed to the realization of the loop checking method. There-
fore we shall use more sophisticated sepanarules for belief modalities, which reflect
peculiarities of belief modalities and are directed to the realization of the loop exclusive
method (for induction-fre&-sequents, see below).
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To define the new separation rules let us introduce two sorts of marks of belief-
type modalities, namely, the first sort of marks is of the shape(where o €
{Bel(i), O, W, |ax]}), and the second sort of marks has the shapg"(i). The first
sort of marks is defined as follows: B = Bel*(i) A, then each occurrence of belief,
temporal and action modalities ith is marked by the first sort of marks aad* = o*.

The second sort of marks is used only for positive occurrences of belief modalities in
the sequent and only in formulas of the shdpeg (i) A. The first sort of marks is used

for positive and negative occurrences of modalities. Both of these marks are meant to
restrict applications of new separationesifor belief modalities and to exclude loops for
induction-freeR-sequents.

DEFINITION 4 (separation rule§SR;)). The separation rule&SR;) (1 < I < 5) are
obtained from the rule$SR;) (1 < I < 3) replacing the rulgSR3) by the rules
(SR;3), (SR4) and (SRs) having the same conclusion as the rgieR%) and the fol-
lowing premises.

Let Bel(1)A,; € BA, whereA,, contains at least one negative occurrence of a
belief modality andBel(l)A,; (1 < | < p,p > 1) has no second sort of marks,
BA'" = BA \ Bel(l)A,,;, where BA" = Bel(b1)Aq,...,Bel(bym)Am (m > 0);

BI' = Bel(a1)T'1,. .., Bel(a,)T'y (n > 0), whereBel(ax)I'y, 0 < k < n (Bel(b;)A,,
0 < j < m)is empty or consists of formulas of the shaBel(a;)M (of the shape
Bel(b;)B, respectively). Then

Sz = Bel*(ax)Ty, T} — Bel*(b;)AY, A, 1, Bel™ (1)A,,1, whereBel*(ax)T) = @,

I} = @ (Bel*(b;)AY = @), if ar, # 1 (b; # 1) and Bel*(ay,)T} = Bel*(ax)Ty,
(Bel*(bj)AY = Bel*(b;)A), in the opposite case.

Let Bel(l)A,; € BA(1 <! < p, p > 1), andBel(l)A,; has no second sort of
marks, andBI’ = Bel(a1)T'y, ..., Bel(a,)T, (n = 0), whereBel(ag)Tr (0 < k < n)
is empty or consists of formulas of the shapel(ay)M. Then

Sy = Bel*(ay)I'Y,T% — A,;, Bel*(1)A,,;, wherel') = T, if a, = [, andI'} =
&, Bel*(a)I'y, = @ in the opposite case; moreovétel*(a, )y, = @, if Bel(l)A,,
and each formula fronBel(ay )T, contains the same number of occurrences (different
polarity) of the same belief modalities.

Let BA is empty or consists of arbitrary formulas of the shd@p€ (1) A and BT be
of the same shape as in the previous case, then

Ss = Bel*(ap)I'{, Ty, —, where Bel*(a;)I'% = o, if Ty = Bel(c1),...,
Bel(cy)T, (¢ = 0) andI'}, does not contain positive occurrences of belief modalities,
andBel*(a;)T' = Bel*(ax )T, in the opposite case.

REMARK 2. (a) Using peculiarities of the belief modalities it is easy to prove that each
application of the ruld SR3) can be replaced by the applications of the rules),
(SR4), (SRs), and vice versa.

(b) The rule(SRs) corresponds to the Euclidean property of belief modalities. The
rule (SR4) corresponds to distributivity, transitivity, and seriality properties of belief
modalities. The ruléSR;5) corresponds to the seriality property of belief modalities.

(c) The separation rulgsS R;) (1 < I < 5) incorporate the following rules:
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e the rule for the “next” operator:

Im— A°

VYOIl - VYO A0 (VO),

whereV O1I is empty or consists of formulas of the shape B; A° € {2, A};
e the rule for the action constants:

O— A

= faa

where[a;]Q) is empty or consists of formulas of the shdpd B;
e the non-invertible rules for belief motitées (which incorporate the rules for
belief modality (Nide and Tanaka, 2000)):

Bel(i)T',T' — Bel(i)A, A°, Bel(i)A°
Bel(i)T' — Bel(i)A, Bel(i) A%
r—A
Bel(i)T — Bel(i)A

(Bel-K D45),

(Bel-K),

whereA® € {@, A} andBel(i)A° = @ if A° = @, andBel(i)A° = Bel(i)A,
if AY = A; Bel(i)I'(Bel(i)A) is empty or consists of formulas of the shape
Bel(i)M; the rule(Bel-K D45) corresponds to the modal logic D45 and the
rule (Bel-K) to the modal logids;

e the structural rule of weakening:

@1 *)62
Alael - A2)®2 (W)

DEFINITION 5 (marked contraction rules). Duririlge reduction to primary and reduced
primary R-sequents the marked contraction rulgsi* (i) A, Bel®(i)A = Belt(i)A
(whereo € {@,x}) ando* A, 0 A = o* A (whereo € {Bel(i), O, W, [ax]}) and the
ordinary contraction rulel, A = A (which follows from the set-type notion of a sequent)
will be used implicitly.

REMARK 3. (a) A bottom-up application of the separation (#&, ) (rule (SR»)) elim-
inates occurrences of the symbol (“next”) (the occurrences of action constants, corre-
spondingly). The rule§SR3), (SR4) and(SRj5) separate the temporal and action parts
from the “belief” part, which contains, in general, duplication of formulas with belief
modalities. Despite this duplication, using tb@entraction rules and two sorts of marks,
we can exclude loops for induction-frégsequents (see Section 6) in derivations.

(b) Introducing two sorts of marks in simple separation rflg®;), 1 < [ < 3,
and using marked contraction rules we can also exclude loops. In this case we get more
complex derivations. The separation rulés?;), 1 < I < 5, allow us to get more simple
derivations but require more sophisticated analysis.
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6. Decision Procedure for Induction-freeR-sequents

An R-sequentS is an induction-free [F' R-sequent) ifS does not contain positive oc-
currences of operators “unless” and “star”. The decision proceduteFf@-sequents is
realized by means of calculus for the induction-free temporal logic of belief and action
(IFTBA).

DEFINITION 6 (calculusI FT BA). A calculusIFTBA is obtained from the calculus
GW by adding the separation ruléSR;) (I € {1,2,3,4,5}) and the reduction rules,
except for the rules— Q W) and(— =).

Using induction on the height of derivation, we can show that all the reduction rules
of the calculud F'T'B A are invertible.

The separation rulesSR;) (I € {1,2,3,4,5}) are not simply invertible, but they are
disjunctively invertible.

Using induction on the height of derivation, we can prove the following

Lemma 1. LetS be a conclusion of the rulg§sS R;) (I € {1,2,3,4,5})andIFTBA -
S, then either there exists (1 < i < n) such that/ FT BA + Sy, or there exists
(1 <i<n)yandp > 1suchthatl/ FTBA - Ss, or there existd (1 < I < p) and
p = 1suchthal FT BA F Ss, or there exists such(1 < [ < p) andp > 1 such that
IFTBAF Sy, orthere exists (1 < k < n)suchthal FTBAF Ss.

Because of duplication of belief modalities in the separation r(f&8;), (SR4),
(SRs) there is a possibility to generate infinitely bottom-up applications of these rules,
in general. To stop this infinite process let us introduce a notion of belief firfal4l)
R-sequents which will be a stopping device for non-derivdbigequents in the calculus
IFTBA.

An R-sequentS* is b-final if S* consists of only atomic formulas and/or marked
modalities.

The decision procedure for ah¥’ R-sequentS is realized by constructing the so-
called ordered derivations in the calcullBT B A.

DEFINITION 7. Anordered derivationD for induction-freeR-sequents consists of sev-
eral horizontal levels. Each level consists of bottom-up applications of reduction rules.
At each level, where a set consisting of only reduced-priniasequents is received, all
possiblebottom-up applications of the separation rul8®;), i € {1,2, 3,4, 5} to every
reduced-primaryz-sequent are realized. Each bottom-up application of the separation
rules(SR;) (i € {1,2,3,4,5}) provides a possibility to constructifferent(in general)
ordered derivatioDy, (k > 1).

The ordered derivatio®, is a successful one, @achleaf of D, ends with a logical
axiom. Letall possible ordered derivation3, be such that ireach D, thereexistsa
branch having either such a leaf that a sequent in this leaf contains only atomic formulas
and is not an axiom, or an induction-frBResequent™ such thatS* is ab-final R-sequent.

In these cased,F'T' BA ¥ S and derivation is an unsuccessful one.
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Theorem 1. LetS be an induction-freé&-sequent. Then one can automatically construct
a successful or unsuccessful ordered derivatidof the R-sequentS in /FT'BA such
that D always terminates.

Proof. The automatic way of construction of an ordered derivatiband correctness
(i.e., preservation of derivability) follows from invertibility of the rules of the calculus
IFTBA; termination follows from finiteness of the generated subformula® iand
from the shape of separation rulgsR;), 1 < 1 < 5.

EXAMPLE 5. (a) LetS = Bel(i)A —, whereA = ([a1]P A—[a1]Q). Bottom-up apply-
ing (SR5) (and thenA —), (- —)) to S, we get (using tha#l does not contain belief
modalities) ank-sequentS; = [a1]P — [a1]Q. To S; we can bottom-up apply only
(SR2) and get ank-sequent” — @, which is not an axiom. Therefodd T BA ¥ S.

(b) LetS = Bel(i)A —, whereA = ([a]P A —Bel(i)Q). Bottom-up applying
(SRs) (and then(A —), (= —)) we get anR-sequentS; = Bel*(i)A, [a1]P —
Bel(i)Q. Since[8;]V = @ and(@ does not contain a negative occurrence of belief
modality, we can bottom-up apply onl}¢ R,) (and then(A —), (= —) and implic-
itly the marked contraction rules) and get &sequentS; = Bel*(i)A, [1]*P —
Bel*(1)Q, Q. ThereforeSs, is b-final R-sequentand FTBA ¥ S.

EXAMPLE 6. LetS* = V(Py W([a*|P2 V Bel(i)Ps) — A, whereA = Pi, [a]Ps,
Bel(i)(Bel(i)(Ps V Py)). ThenS* is a primary induction-freg?-sequent. Let us con-
struct an ordered derivation. First we reduce the segfiemd a set of reduced primary
sequents. Sincg™* does not contain either positive occurrences of “unless” or “next”,
instead of bottom-up application ¢f) W —) we can bottom-up applyW, —) to S*
and get theR-sequentSs = P V ([o*] P, V Bel(i)P;) — A. Bottom-up applying the
rules(v —), (x —), from the sequent;;, we get three reduced-primaRrsequents:

St =P — A; S =Py, [o][a*]|Py — A; S5 = Bel(i)Ps — A.

The sequens; is an axiom.

Let us consider th&-sequent;. We can bottom-up apply the separation ryl&é&-)
or (SR,) to the sequens;. Let us try to bottom-up apply the rul& R,4) to S;. Then
we get a reduced-primafy-sequeniS;; =— Bel(i)(Ps V Py). We can bottom-up apply
the rule(SR,) to the sequens$s; and, after applying bottom-up the rule> V), we get
a sequent> P; P, which is not an axiom. Now let us bottom-up apply the r(i#eR,)
to S; and get ank-sequentSs, = [o*]|P, — P,. SinceS;, does not contain positive
occurrences either efor action constants, bottom-up applyifig —) to S5, we get an
axiomPy, — P.

Now let us consider th&-sequentS;. We can bottom-up apply the separation rules
(SR2) or (SR4) to the sequents. Bottom-up applyind.SR») to S5, we get the sequent
— P,, which is not an axiom. Bottom-up applyin@R4) to S5, we get the reduced
primary R-sequentS;; = Ps, Bel*(i)P; — Bel(i)(Ps V Py). We can bottom-up apply
the rule(SR,) to the sequent3; and get the sequefy — PV Py, and after bottom-up
applying the rulg— V), we get an axionPs — Ps, P.
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Therefore, for thd F'R-sequent5™*, we have constructed a successful ordered deriva-
tion (in the calculud FT BA). Hencel FT BA - S*.

7. Decision Algorithm for Arbitrary R-sequents

In this section, we consider arbitraf}sequents, i.e., sequents with positive occurrences
of “unless” and “star” operators. As indicatedSection 3, positive occurrences of these
operators allow us to formulate induction-like properties of temporal and action parts of
TLBA. This fact necessitates a departure fromlimary Gentzen-lik calculi. The basic
positiveclosure axiomi'; A — A, A of the calculi, described in the previous sections,

is not sufficient for an arbitraryz-sequent. The positive branch closure now requires an
inspection ofR-sequents other than a logical axiom in a leaf of derivation. This idea was
raised in (Wolper, 1985) and realized for the tableau-like temporal calculus. Wolper’s
idea is wide used in the works on the temporal resolution calculus of Liverpool school
(see, e.g., Fishest al,, 2001). Wolper’'s idea was rediscovered in (Pliuskas, 1993)

for the sequent-like temporal calculus with separation rules, and subsequently used in
(Pliuskevtius, 1994; 1996; 1998) and (Pliuskéiwis and Pliuskediere, 2003).

So, along with the logical axioms, we introduce notions of temporal saturated (
saturated) and action saturateds@turated)?-sequents that play the role of non-logical
axioms. The decision algorithm for an arbitraR¢sequent is realized by means of a
temporal calculus for belief and actiofh' B A).

Let D be a derivation in some calculus afd be a branch inD. The R-sequent
S* =T — A from the branch:) is asaturatedR-sequent if, in the brancti) aboveS*,
there exists ati-sequent of the shapge™ = T',II — A, ©, in a special cas&s™* = S**.

A saturatedR-sequentS* is ¢-saturatedf S* =T' — A, Q(AWB), and a saturated
R-sequentS* is a-saturatedif S* = T' — A, [o*]A. These sequents will be used as
non-logical axioms.

DEFINITION 8 (calculusI’BA). A calculusT B A is obtained from the calculug"T' B A
by adding: (1) non-logical axioms of the shdpe~> A, Q(AWB) orT’ — A, [a*]A and
(2) the reduction ruleé— Q W), (— ).

We can present the decision procedure for an arbitRasgquent in the same way as
in the case of induction-freR-sequents. Namely, we construct ordered derivations in the
same manner, as described in the previous section. But there is a new substantial point:
along with the logical axioms there am®n-logical axiomsIf there existsan ordered
derivationD of R-sequentS such that in a leaf ofachbranch(:) of D there is either
a logical axiom, or a non-logical axiom, then in both these c§38sl - S (positive
criterion of termination of the procedure). If @l the possible ordered derivation,
of an R-sequentS thereexistsa branch having an induction-fréé-sequentS™ such
that[FTBA ¥ S*, thenTBA ¥ S (negative criterion of termination of the decision
procedure).
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To justify the presented decision procedure, we must found: (1) termination of the pro-
cedure and (2) disjunctive invertibility of the separation rulé®;) (i € {1,2,3,4,5})
in TBA. The foundation of the negative criterion of termination of the procedure fol-
lows from the regularity condition oR-sequents and decibliity of induction-free R-
sequents. The positive criterion of termination will be founded by means of finiteness
of the so-calledR-subformulas of primaryR-sequents which are generated during the
construction of an ordered derivation. Let us define the precise notiasofbformulas
of an R-sequent. This notion corresponds to Rise-Ladner closure (see, e.g., Emerson,
1990; Harekt al., 2000).

DEFINITION 9 (R-subformulas). Lef be a primaryR-sequent and’ be a formula en-
tering.S. A set of R-subformulas of” from S is denoted a®Sub(C) and defined induc-
tively.
1. RSub(P) = @, whereP is a propositional symbol.
2. RSub(Q O A) = RSub(A), whereQ € {V, 3}.
3. RSub(—A) = RSub(A).
4. RSub(A® B) = {RSub(A)} U {RSub(B)} (©® € {D,A,V}).
5. RSub(Bel(i)A) = Bel(i)AU {RSub(A)}.
6. RSub(Q(AWB)) = QO Q(AWB) U {RSub(A)} U{RSub(B)}; Q € {V¥,3}.
7. RSub([a;]A) = RSub(A), whereq; is an agent constant.
8. RSub([a*]A) = [a] [a*]A U {RSub(A)}.

9. RSubla o f]A = RSub([a] [B]A).

10. RSubla U B]A = {RSub([a]A)} U {RSub([B]A)}.

11. RSub([P?]A) = RSub(A).

A set of R-subformulas of theR-sequentS = A;,..., A, — Ant1,---, Antm
(or a set of formulasS = {Ay,..., Antm}) is denoted byRSub(S) and defined as
RSub(S) = U " RSub(A;).

From the definition ofRSub(S) we get that for each primari-sequentS, the set
RSub(9) is finite. LetS be a given priman-sequent) be an ordered derivation 6f,
andsS; be a primaryR-sequent fromD. Then, from the shape of the rules of the calculus
T BA, the description of an ordered derivation, and from the definitioR8t.b(S) we
get thatRSub(S;) C RSub(S). Therefore nothing new can be obtained in constructing
an ordered derivation of aR-sequent. Hence, if an ordered derivatidmioes not contain
an induction-free?-sequents; such thal F'T AB ¥ S;, then in a leaf of each branch)
of D there is either a logical axiom or a non-logical axiom.

Hence the termination of the positive criterion of the decision procedure is justified.
To justify the disjunctive invertibility of the separation rulgsR;) (i € {1,2,3,4,5})an
infinitary calculusl’'BA,, is introduced.

DEFINITION 10 (calculusTBA,). A calculusTBA,, is obtained from the calculus
TBA by means of: (1) elimination of non-logical axioms and (2) replacing the rules
(— QW), (= *) by the ruled— QW,,) and(— x,,) (see Section 3).
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Using double induction okin, k), wheren is the number of positive occurrences of
W andx, h is the height of derivation, analogously as in (Pliuskaws, 1998), we can
justify the disjunctive invertibility (see Lemma 1) of the separation r§lg€R;) (i <
{1,2,3,4,5})in TBA,,. To prove thal’ BA,, andT BA are equivalent for the class of
R-sequents, let us introduce the invariant calculiysl’ B A, which is obtained from the
calculusT'B A, replacing the non-logical axiom by the following invariant rules:

r-AILII—-BQOI;I—AB

' - A QAWB)

Fr—ALI-[o;I—A
I — A a*]A

(—ew),

— */),

where the formuld is called an invariant formula and is constructed automatically, using
non-logical axioms (analogously as in (PliusSkaus, 1994)). Analogously as in (Pliuske-
vicius, 1998), we can show that the calclilBA, INTBA, andT BA,, are equivalent

for the class ofR-sequents. Therefore the rule$R;) (i € {1,2,3,4,5}) are, also, dis-
junctively invertible in the calculug’B A. Hence the justification of the main points of
the presented decision algorithm for an arbitr&gequent is complete and we can get
the following

Theorem 2. Let S be a non-induction-fre&-sequent. Then one can automatically con-
struct a successful or unsuccessful ordered derivafioof the R-sequentS in TBA
such thatD always terminates.

Proof. The automatic way of construction of an ordered derivatiband correctness
(i.e., preservation of derivability) follow from invertibility of the rules 6fB A; the ter-
mination follows from finiteness aRSub(.9).

REMARK 4. (a) To make the presented decision procedure more effective some sub-
sumption rules can be introduced with the help of which non-essdtsalquents can be
eliminated.

(b) The complexity of the presented algorithm (as in a temporal logic (see, e.g., Emer-
son, 1990) and il DL (see, e.g., Hardt al, 2000)) isPSRAC E-complete, i.e., during
the construction of an ordered derivation we generatB-sequence the length of which
can be restricted by some polynomial depending on occurrences of the opérgtors
(“unless”) andk« (“star”).

EXAMPLE 7. LetS = V(AW(B Vv C)) — I(AWB),3(AWC). Let us construct an
ordered derivation of' in the calculus’BA. First we try to reduce the sequefitto a

set of reduced primary sequents. It is easy to verify that during this process and bottom-
up applying the reduction rules, we get tResequent of the shapey = AV (B Vv C),

I' — A, B, C, A and the reduced primafy-sequentS, = AV(BVC),VO (V(AW(BV
C),YO-3(AWB)),YVO-3(AWC(C)) — B.FromGW + Av (BVC),T — A,B,C,

A follows thatT' BA = S;. Let us consider thé&-sequentS,. We can bottom-up apply
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only the rule(SR;) to the sequens§, and get ank-sequentSy; = V(AW(B Vv C)),
-3(AWB)),-3(AWC) —. Bottom-up applying the rul¢—~ —) to Sa;, we get an
R-sequentS* = V(AW(B VvV C)) — J(AWB),3(AWC). SinceS* = S, Sis a
t-saturated one, i.e., a non-logical axiolherefore we have constructed a successful
ordered derivation having logical axioms and one non-logical axiom. HEf#4 - S.

8. Conclusions and Further Investigations

In the paper, the decision algorithm for a restricted temporal logic of belief and actions is
presentedl’ L B A). The considered logic allows us to express informational and dynamic
properties of rational agents (see Sections 2, 3). The regularity condition (see Section 3)
allows us: 1) to separate the decision procedure for induction-free sequents and 2) to
use only logical axioms in leaves of derivations for these sequents (see Section 5). The
main technical tool of the presented decision algorithm is the separation(ies
(z € {1,2,3,4,5}) which incorporate traditional rules for the “next” operator, multi-
modal belief modalities, agent constants, and reflect the properties of belief modalities.
Unfortunately, the consideréfiL BA does not contain, just lik&DI, K ARO and
LORA logics, any tools for interaction betweelifferent agents and for action interac-
tions. So, in future investigations, we are going to consider agent-like logics with interact-
ing beliefs and actions and containing tools for communications. Another interesting and
important investigation is related with the consideration of some fragments of first-order
agent-based logics, extension results in (Pliuasi 2000; PliuSke¢ius and Pliuske-
viciere, 2003), and with consideration of some fragments of the first-order agent-like
logic LORA (Wooldridge, 2000).
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ISsprendZiamoiji procedura tik ejimo ir veiksmu laiko logikai
Regimantas PLIUSKE\GIUS, Aida PLIUSKEVICIENE

Pateikiama iSsprendZiamoji proaed kompiuterini ageng logikai, ijungiartiai laiko logika
CT L, multimodalumo logik K D45,, ir teiginiy dinamire logika. Sios logikos aprago informa-
cines ir dinamines kompiuteripiagent savybes.



