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Abstract. The contribution of this paper is a new version of the escape time algorithm adapted
to synthesize fractal images, identified with attractors of iterated function systems (IFS). The pro-
posed synthesis algorithm is based on the use of shift dynamics, associated with one or another IFS.
The novelty of the algorithm is grounded on two factors. Firstly, the strategy for the separation of
extended domains of the inverse affine transformations, specified by IFS, is developed. Secondly,
the variable escape time for different points of a synthesized fractal image (IFS attractor) is pro-
posed and explored. Experimental results show that the above two factors ensure uniform rendering
of image points (pixels) in colour.
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1. Introduction

Throughout the last decade development and @mgntation of fractal image processing
technologies was an area of increasing interest. Much was done in preparing and matur-
ing diversified fractal image encoding (compression) ideas (Jacquin, 1992; Fisher, 1994;
Wohlberg and Jager, 1999; Valantireigl., 2002). Constant attention was paid to fractal
modelling, to the analysis and synthesis of fractal images (Tietnar, 1998; Peitgen
et al., 1992). Elements of fractal geometry (fractal dimension, fractal interpolation, frac-
tal calculus) were put to work in real-world applications (Barnsley, 1993; Evans, 1997;
Yokoyaet al., 1989).

In the field of computerized real-world imagnodels (digital images) the fractal ap-
proach is of outmost importance, becaustadilitates perception and understanding of
the information content of an image. To say more, it provides us with a powerful means to
catch sight of a fundamental real world image property generally known as self-similarity.
Due to this property, the research and depehent of algorithms (“fractal techniques”)
to extract important fractal parameters froppeopriate digital data has received signif-
icant attention in recent years. Most rapidleveloping areas (let us emphasize it once
again) are the use of fractal geometry for synthesizing images, for recognizing patterns
in images and performing image data compression. Moreover, the latter areas are closely
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intertwined. Say, the problem of synthesizing (fractal) images is far from being an end
in itself. Well-known fractal image compression technologies (Barnsley and Hurd, 1993;
Fisher, 1994), without exception, employ fractal image synthesis procedures at the image
decoding stage. From this point of view, any attempts to develop, to modify and to put
into practice one or another fractal image processing (synthesizing) technique or idea are
worthy of great praise.
In this paper, the basic coapts and ideas that are neededescribe, state and solve

the problem of synthesizing fractal images, identified with the attractors of iterated func-
tion systems (IFS), are introduced and explored (Section 2). In the centre of attention — the
shift dynamical system, which generates fractal images (attractors of IFS). A new origi-
nal approach (idea), leading to practical implementation of the above dynamical system,
is proposed (Sections 3, 4 and 5). A number of experimental results are given (Section 6).

2. Creating Fractal Images — Attractors of IFS

Let (R2,d) be a Euclidean metric space aq#l(R*),%) denote the corresponding
(fractal) space of nonempty closed subsets, with the Hausdorff distance (ntetsic)
max{d(A, B),d(B, A)}, where

d(A,B) = glgi({d(P,B)}, d(P,B) = IQDEHBl’ {d(P, Q)},

forall A, B € H(R?); d(B, A) is defined similarly.

Let w;: R? — R2?, ¢ = 1,2,..., N, be a contractive affine transformation on the
metric spacé€R?,d), i.e.,VP(z,y) € R? w;(P) = wi(z,y) = (a;x + by + e;,cix +
d;y + fi), wherea;, b;, ¢;,d;, e;, fi € R, and let

8 = sup {éi]d(wi(P),wi(Q)) <5 -d(P,Q),P,Q ¢ RQ}

indicate the (global) contractivity factor far;; 0 < s; < 1, = 1,2,..., N. In what
follows, the metric spacéR?, d) together with a finite set of contractive affine transfor-
mationsw;: R — R%,i =1,2,..., N, is called an iterated function system (IFS) and is
denoted by IFSR?; w1, wa, ... ,wN }.

Let us move the above affine transformations into the sgaf€R”), ). Then
w;: HR®) — H(R?), defined byw; (B) = {w;(Q)|Q € B},VB € H(R?), is a contrac-
tive affine transformation ot (R”), k), with contractivity factors;, i = 1,2,..., N.

Combiningw;: H(R*) — H(R?),i =1,2,..., N, we produce a new transformation
W: H(R?) — H(R?) on the fractal space (R?), h), namely:

N
W(B) =w (B)Uwy(B)U...Uwn(B) = U wi(B),

for all B € H(R?). We note here that the latter transformation is also contractive, i.e.,
h(W(B),W(C)) < s-h(B,C), forall B,C € H(R?); heres = max{s1,52,...,5n}
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The only fixed pointd € H(R?) of W, such that

-

A=W(A) =| Jwi(A) = lim (WoWo...oW)(B)

n—oo

=1
= lim (W°")(B), VBe H(R?),

n—oo

represents an attractor (fractal image, fractal) of the IFS (Barnsley, 1993).

Among the algorithms, applied to creating attractors of IFS, we find the following
ones — the photocopy (deterministic) algorithm, the random iteration algorithm and the
escape time algorithm. The former two algorithms, roughly speaking, are based on the
definition of the attractor of an IFS, i.e., explore the fact that the set (attractor, fractal
image) A is an attractive fixed point foi/: H(R?) — H(R?). These algorithms are
reasonably fast and can be used to create sufficiently realistic images.

The third (escape time) algorithm is of particular interest. Usually, it is applied to
the analysis of nonlinear mappings in a complex plane C, i.e., to the study of dynamical
systems{C; f} and their orbits, wher¢: C — C is a single non-contractive transfor-
mation. It appears that such dynamical systems are sources of fractal images (Peitgen
et al., 1986). For a special class of fractal images — IFS attractors — no version of the
escape time algorithm is adapted in full. Though, the application scheme of the algorithm
is well defined and completglperceptible. We here present a brief description of the
escape time algorithm, oriented to create (bgsize) fractal images, identified with the
attractors of IFS:

1. Let an iterated function system IF&?; wy, wo, ..., wy}, With an attractord =
wi(A)Uwa(A)U... Uwy(A) € H(R?), be given. Assume that all affine trans-
formationsw;: A — A (i =1,2,...,N) are invertible.

2. Let {4; S} be a shift dynamical system associated with the IFS, where the shift
transformatiors: A — A is defined (for alu € A) as follows:S(a) = w; ! (a), if
a € w;(A)(i €{1,2,...,N})anda ¢ |J; ., w;(A); we say that the point is
in the domain (under the action)of *; S(a) = w; ' (a), if a € w;, (A) Nw;, (A)N
coNw; (A)ie € {1,2,...,N}, t = 1,2,...,r; we say that the point is under
the action of anyone of transformatiang L

3. The shift dynamical systemA; S}, associated with the given IFS, is extended
to R2, i.e., a new dynamical system (an extensi¢Ry; S} is formed. The new
shift transformationS: R2 — R2 is defined by the equalit§(P) = w; ' (P),
provided the poin® € R? is under the action of the inverse affine transformation

w;l(i € {1,2,...,N}). In particular,5 mapsA onto itself, i.e.,5 coincides with

K2

the transformatiois, for all points lying on the attractot c R? (Fig. 1).

4. Let the set (attractor) fall into a rectangle (viewing windowl, i.e.,A C R C
R2. Then, for every poinP € ®, an orbit{ S°*(P)}3_, is calculated numerically;
hereS is a priori defined number of iterations.

5. LetR be a positive number such thatthe ball O, centred at thg symmetry ¢eafre
the viewing window, contains botm and® (Fig. 1). If, now,d(S°%(P),0) < R,
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i.e., the orbit ofP € R does not escape the ball (afteiterations), a conclusion is
made — the poinP belongs to the attractot (P is rendered in colour); otherwise
(d(S°3(P),0) > R), P ¢ A.

As it can be seen, the escape timgaalthm explores the fact that the sét(attractor
of the IFS, fractal image) is a repulsifixed point for the transformatios: H (R2) —

H (RQ). Evidently, the orbits of points that lie close to the attractdake longer to escape
from the ball O than those of points which lie further away.

The main obstacle preventing the esctipee algorithm from being adapted to syn-
thesizing of fractal images, associated with IFS, is the following one — neither theoretical
nor empirical criteria exist for the separation of extended domains of the inverse affine
transformations. Some authors mention in passing that the extensions of the domains can
be defined with the aid of straight lines (Barnsley, 1993). Unfortunately, in a general case,
no appreciable results have been obtained and published till now.

So, broadly speaking, the search for tteaned above criteria becomes an object of
theoretical interest and theoretical investigations despite even the final outcome — practi-
cal applicability (in the efficiency senpef the sought-for criteria themselves.

This paper introduces a new interesting approach (idea) to separating extended do-
mains (inR?) of the inverse affine transformatio(Bection 3). The proposed idea facili-
tates adaptation of the escape time algoritbrsyinthesizing of fractal images (attractors
of IFS).

Also, to ensure uniform rendering of points (pixel3) R in colour, a variable num-
ber of iterationsy = (P), for different points in the viewing window, is introduced
(Section 5).

The ball O

In this region
N = (F

| o il

I this region
.";'I )= el.r:'l'nr"l

R

En this regien
SPY = wl [)

Fig. 1. The dynamical systefR?; §} is obtained by extending the definition of the shift dynamical system
{A; S}, associated with IFR?; w1, w2, w3}; A = w1 (A) Uwa(A) Uws(A) is the IFS attractor
(Sierpinski triangle); bold type lines separatdended domains for affine transformations.
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3. Determination of Extended Domains for Inverse Affine Transformations —
Stating the Problem

Consider an IFSR?; w1, wo, . ..,wn}, Whose attractor is the set € H(R?). Let us
denote the fixed point and the (global) contractivity factowef(i € {1,2,...,N})
by M; ands;, respectively. For more detaile@stription of the “behaviour” of; (i €
{1,2,...,N})in (R%d), it is expedient to introduce a local contractivity facte(P),
P € R?, acting in the direction, specified by the veclatZ;, namely:

s;(P) = \/(ai cos @; + b; sin;)2 + (¢; cos p; + d; sin ;)?;

here:a;, b;, ¢;, d; are parameters (real numbersyof ; = ¢;(P) is the angle between
PM; and the positive direction of the axis of alssae. More convenient formula, espe-
cially for practical applications, is the following one:

si(P) = d(w;(P), M;) /d(P, M;). (1)

Suppose, now, tha{tRQ; §} is an extension of the shift dynamical systém; S},
associated with the IFS. As it was mentioned above (Section 2), the shift transformation
S maps any poinP € R? into a new pointP; = §(P) = wi_l(P), providedP is under
the action ofv; * (i € {1,2,...,N}).

In a theoretical sense, for the separation of extended domains of the inverse affine
transformations, the use can be made of the following criterion

1

o {d(P.wi() /si(P)} = (P (4) #)

(indexi° shows an affine transformation, into whose domain the pBifalls in). Un-
fortunately, practical implementation of téterion (expression (2)) is complicated, be-
cause neither the attractdrnor its copiesv;(A), i € {1,2,..., N}, are known.

In this context, we are to formalize the application scheme of the escape time algo-
rithm, described in Section 2. Firstly, let us construct aé8t) of ordered3-tuples § is
a positive integer), i.e.,

I(S) = {(i1,d2, ... ig)|ir € {1,2,...,N},k=1,2,...,S}.

Clearly, the number of elements i) equalsN .

Now, for a particular3-tuple (ordered collection of indice$), i, . .., is) and for
any pointP € ® C R?, we can compute an orbit (sequence), comprisingoints,
namely:{P;,, Pi, iz - - - Piy ia.....is }» Where

Py igip = (wi_kl 0...0 wi_; o wi_ll)(P)7

forallk € {1,2,...,S}.
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By choosing properly both the radidgof the ball O and the number of iteratios
we come to the conclusion (based on the material in Section 2) — the PdiRt€ R)
belongs to the attractot if and only if the condition

min {d(Py, 4,,....iqs A) | (i1, 82, ..., i5) € I(I)} = d(Pis ;

o 7O
100900 tg0)

AR (3

holds true; otherwise(d(Pig_,Z-g_,,,,yzg, A) > R), P ¢ A. Obviously, theS-tuple
(1,15,...,1&) € I(S) indicates the case when extended domains are defined correctly
for all points in{S%"(P)}3_,.

Mainly, on account of the inequalityiam(A) < R, condition (3) can be reformu-
lated this way:

(PeA) & (min{d(al,iz,,,,,ig,0)\@, ia, .. ig) €1(3)}=d(Pis is....is, 0)<R); (4)

hereO is the symmetry centre of the viewing winddiw

The directimplementation ofie above formal approach (criterion (4)) is problematic,
since cardinality of the sef(3) increases drastically, with the number of iterati@hs
increasing.

4. The New Strategy for Determination of Extended Domains — Solving the
Problem

We here present a new strategy (criterion) for the separation of extended domains (in
the Euclidean spacfR?,d)) of the inverse affine transformations, associated with an

IFS{R?; w1, ws, ..., wn}. It leads to practical implementation of the condition (4) (Sec-
tion 3). The essence of the proposed criterion — the dai;r];;,,,,iz (ke{l,2,...,3—
1}) of a sequentially computed orbi5°"(P)}3_,, P € R, is under the action of the
; ] PR ; s
inverse affine transformatltwliz+1 (igr1 €{1,2,...,N})ifand only if:
ik+1,...,ikirji€rl{l,2 VVVVV N} {d(PiTV'wiZ7ik+17~~~aik+r ? Pi?a--wiz) }

:ik+2 ..... ikfiien{l,Q,...,N} {d(Pig""’izﬂ’i’““"“’i’““’Pi?""’iz)} (2<7<N). ()
In other words, to decide upon the extended domairﬁio,ri;,___,i: or, what is the same,
for the separation of extended domainsKif), the strategy + steps ahead” is proposed.
The strategy (criterion) is based on the following factors (easy to prove):

— if P (P € R?) is in the domain of the inverse affine transformation’ (i €
{1,2,...,N}), then
d(w;'(P), A) < d(w; ' (P),A),
forallj € {1,2,..., N}, j # i; this assertion follows directly from the expression
(2) (Section 3);
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— for any pointP € R? and its imageP; = w; ' (P) (i € {1,2,..., N}) the inequa-
lity

d(P,, P) > d(P.A) - (1 s(P))/s(P) > d(P,A) - (1 - 5)/s

is true;s(P) = max{s;(P)|j = 1,2,..., N}. It means that the distance between
two points,P and P;, increases, aB moves away from the attractet;

— the relationship

d(Pye

100

i?\vA) = min {d(Pi‘f,---7i§,ik+17~~,isaA)}
> (19508 sl 15005 ) EL ()

is valid (follows from (3)), for all values ok (k € {1,2,...,3 — 1}). Conse-
quently, the orbit SO (P)}3_, of the pointP € R can be calculated in consecu-
tive order.

The obvious advantage of the proposed criterion (expression (5)) —roflyk <)
steps ahead are needed to decide upon the correctness of the choice of a particular ex-
tended domain for the poir; ;5. . ;e (k € {1,2,...,3 — 1}), i.e., in computing orbits
for points from the viewing windowR, we avoid complete analysis &-tuples in the
setl(S) (expression (4); Section 3). The latteradysis is replaced with the detailed in-
vestigation (at every orbit point) of-tuples(iy, iz, ..., i,) € I(r), where|I(7)| = N7,
andS - N7 is much less thatV (3)| = N°. At the same time, the criterion (strategy) is
comparatively simple and easy to use.

Below, we present an illustrative example where the proposed strategyeps
ahead” is employed (Figs. 2, 3). We treat an{RS; w1, w- }, wherew; = wi(z,y) =
(=1/v2y + 100,1/v2x) andwy = wa(z,y) = (—1/v2y + 200,1/v2z). The IFS
attractorA = w (A) Uwy(A) = {(z,)[0 < = < 200,0 < y < 100+/2} is the union of
two copies of itself, each scaled by a factgk/2. The inverse transformations asg ' =
wit(z,y) = (V2y, =2z +100v/2) andwy = wy (2, y) = (V2y, —v/2x +2001/2).

The dynamical systerﬁRQ; §}, defined by

~ P~ wit z,y), x> 100,
8(P) = 8(a,y) = { “1, (@)
w2 (‘Tay)7 X < 1001

is an extension of the shift dynamical systénh; S}, associated with the given IFS. The
latter assertion is based on the task-oriented analysis of points (and their orbits) from the
viewing window®R (Fig. 2).

For instance, let us take a poift(208,100v/2) € R and construct its orbit
{89(P)}3_,, using the strategy “2 steps ahead”. Firstly, the pditself falls into
the extended domain of the inverse affine transformatiph, since (criterion (5))

min {d(PZ-M-Q,P)}: min {d(Pz,in)}?

i1,i2€{1,2} i2€{1,2}
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(b)

Fig. 2. Application of the strategy “2 steps ahead": (a) processing of the initial poit); (b) processing of
the pointP, = w; ' (P).

hereP; ; = (w; 'ow; ')(P), foralli, j € {1,2}; thus,i; = 2 (Fig. 2a). Secondly, for the
newly obtained orbit poinP, = P5(200, —8v/2) = w, '(P), application of the strategy
“2 steps ahead” leads to the following result

iQVi?éiﬁz} {d(PQ,iQ’is ’ P2) } - 132}[11{12} {d(P2,2,i3 ) P2) };
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consequently, the poinP, is under the action of; !, i.e.,i5 = 2 (Fig. 2b). In the
same way, it can be shown that the pailit, = w; ' (P,) falls into the domain of; *,
P51 = wi(Ps2) —into the domain ofo; !, and so on.

Now, if both the radius® of the ball O and the number of iteratio@sare fixed (say,

R = 400,$< = 14), then repeated application of theagegy “2 steps ahead” generates
an orbit{5°"(P)}14 which escapes the ball O on the 11-th iteration (Fig. 3). So, the
point P doesn’t belong to the IFS attractdr Similar reasoning is applicable to all points
in &.

One can easily ascertain that the computational complexity (the number of map-
pings, performed in evaluating the orbit 6f € R) has been reduced considerably,
when compared with the direct implementation of the criterion (4) (Section 3). Really,
J-NT=14-22 =56 < N¥ =21 = 16384.

Finally, in order to simplify (optimize) calculations, one can define preliminary all
possible superpositiom@:}i2 i R? — R?, specified by formulae

.....

wifh VVVVV i (P) = (w;l o... owi_z1 owi_ll)(P);
ir € {1,2,...,N},k = 1,2,...,7, and put them to work in deriving criterion values
(expression (5)).

Itis worth emphasizing, the developed criterion “works” well, provided the dispersion
of contractivity factorss; for affine transformations;, i = 1,2, ..., N, is small enough
(Isi —sj| <A, i=1,2,...,N;A =0—0.1). In other cases, to insure higher quality
of synthesized fractal images, corrections of the number of iterations, depending on the
frequences of the inverse affine transformationgdjn:s, . . . , <)), should be made. In

Fig. 3. The orbit{§°"(P)}}L‘l:1 escapes the ball O — the initial poiftdoesn’t belong to the IFS attractar.
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other words, every poinP € R should be associated with its “own” escape time, i.e.,
with its “own” number of iteration§s = (P).

5. Implementation of the Variable Escape Time

Consider an IFER?; wq,ws, . .., wy } With contractivity factors (s = max{si, s2, ...,
sn}). Let My, Ms, ..., My denote fixed points of contractive affine transformations
wi,ws, ..., wN, respectively.

For a single affine transformatian (i € {1,2, ..., N}), the orbit{ (w; })o*(P)} >,
of the pointP, such thati(P, M;) > ¢ (¢ is a small positive number), escapes the ball
with radiusR and centre ab/; if and only if

S > log(R/5)/ log(1/s:).

To say more, ifs; > s;(i,5 € {1,2,...,N}), then points lying in the neighbourhood of
M; escape faster than those lying in the neighbourhodd of
Based on this understanding, the following procedure, for the determination of the
number of iterations for points in a viewing window (and outside it), is proposed:
1. The initial maximal escape time (in the number of iteratio&g).(P) for the
point P € &, which falls into the extended domainwgl(i‘l’ €{1,2,...,N}),is
found:

Smax(P) > —log(R/0)/logs;s (6)

whereR is the radius of the ball O, containing both the attractasf the IFS and
the viewing windowR; s; is the (global) contractivity factor f(w;fl; for practical
applications§ = 0.1 — 1.5.

2. LetPl-;}_,i;_,,,,yz-: be thek—th pointin the orbit ofP € &, and the number of iterations
(escape time) left equél;. ., (initially, Siert = Smax(P)). Now, if Pis ig,...i0 is
under the action of the inverse affine transformaztk;ﬁ1 (ipp1 €4{1,2,...,N}),
then the next orbit poirﬂ’i;},igmizﬂ is computed, and the numbgy. s, undergoes
corrections:

log sie | (Pi‘l’,ig,...,iz+1)

; (@)

Stest = Sieft — Tog 57
1

where the local contractivity factare | (P is.....ie, ) is found using formula (1)
(Section 3), i.e.,

- d(Pif,ig,...,i27]\/[iz+1)
k1’ d(PZ

oo o Mo )
1020y k+1

3. If Syepe < 0, the condition (4) (Section 3) is verified. Computing of the orbit (for
P) is terminated. I3 > 0, thenk := k + 1 and the move to step 2 is made.
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4. The pointP € R is rendered in colour.

Finally, if a given IF§R?; w1, wa, . .., wx } contains only similarity transformations,
then their contractivity factors, being invant with respect to a chosen direction, can be
computed once and beforehand. It leads to some time savings in applying the proposed
synthesis algorithm (expressions (4)—(7); Sections 3-5).

6. Experimental Results

Computer realization (programming language C#.NET) of both the proposed criterion
for the determination of extended domains for inverse affine transformations and the new
version of the escape time algorithm, adaptesyinthesizing of fractal images, identified
with attractors of IFS, was done. Some experimental (synthesis) results are presented
below (Figs. 4-6).

Extended domains for the inverse affine transformations, associated with the
|FS{R2;UJ1,UJ2} (wl: a; = —0.5,by = —0.5,¢1 = 0.5,dy = —0.5, e; = —48.38,
fl = 8, wo.as = 0.5, by = —0.5,¢c9 = 0.5,dy = 0.5, e = —86.8, f2 = 584) and
the |FSR2;W1,L¢)2,(U3} (wli ar = 05,61 =0,¢c1 =0,dy = 0.5,e1 =0, fl = 0;
wo: Ay = 0.28, bg = —0.4, Cy = 0.4, dz = 0.28, €o = 134, f2 = 8&; w3. ag = 0.5,
bs =0,c3 =0,ds =0.5,e3 =8, f3 = 0), are shown in Fig. 4 (fixed points of the affine
transformations are coloured in black). Syrdiseesults (fractal images, attractors of the

(b)

Fig. 4. Extended domains for thefiak transformations: (a) IRR?2; w1, w2}; (b) IFS{R2; w1, w2, ws}.
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C

Fig. 5. Synthesis results — IFR?; w1, w2} (@) R = 500; 6 = 1; (b) R = 500; 6 = 0.75;
(c) R = 500;6 = 0.15.

RN TARATAR
h ah o
+f =L
(a) (b)
Fig. 6. Synthesis results — IFB?; w1, w2, w3 }: (@) R = 700;§ = 1; (b) R = 700; 5 = 0.4.

above IFS) are presented in Figs. 5, 6. As it can be seen, the quality of synthesized frac-
tal images highly depends on the initially prescribed number of iterations (escape time)
Smax, Which, in its turn, is a function of the parameterTo say more, the latter param-

eter enables us to balance between “poornasd’“coarseness” of the resulting images
(Fig. 5).

Computational time of the developed dyesis algorithm depends on the number of
affine transformations entering a particular IFS. Preliminary results show that the algo-
rithm is slower, when compared with the random iteration algorithm, but is slightly faster
than the deterministic one.
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7. Conclusion

Various algorithms for the synthesis of fractal images, identified with the attractors of
iterated function systems (IFS) are known, namely: the photocopy (deterministic) algo-
rithm, the random iteration algorithm and the escape time algorithm. The former two
algorithms, roughly speaking, are based om dlefinition of the attractor of an IFS. The
third (escape time) algorithns icharacterized as being more universal, and, as a rule,
is applied to the analysis and visualization of nonlinear mappings, acting in a complex
plane. Unfortunately, no version of the lattég@rithm is adapted to create fractal images,
identified with the attractors of IFS.

The main and serious obstacle in exploring this algorithm — rather complicated and
embarrasing determination of extended @ims (in a Euclidean space) for the inverse
affine transformations, comprising the shift dynamical system, associated with one or
another IFS.

In the paper, a new original criterion (strategy) for the separation of the said extended
domains is proposed. The criterion creates ¢k for the adaptation of the escape time
algorithm to the synthesis of attractors (fractal images) of IFS of various types (totally
disconnected, just-touching, overlapping). The criterion itself relies upon the sequential
realization of the shift dynamical system mentioned above.

The preliminary experimental results show that the new version of the escape time
algorithm proved correct. To say more, the obvious theoretical result was gained — the
“escape times” idea was fitted to the synthesis of IFS attractors.

In the future, some additional analysis, concerning the quality of synthesized fractal
images (in particular, with respect to their fractal dimension) is supposed. In parallels,
justified applicability of the developed image synthesis approach to fractal image deco-
ding procedures is planned too.
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Poslinkiu dinamikos taikymas sintezuojant fraktalinius vaizdus
Jonas VALANTINAS, Tomas ZUMBAKIS

Siame straipsnyje pateikiama nauja ggimo laiko algoritmo versija, adaptuota sintezuoti frak-
taliniams vaizdams, tapatinamiems su iteajipfunkciju sisteny (IFS) atraktoriais. $ilomas sin-
tezes algoritmas remiasi tiksliniu poslinkidinamikos, apraSomos konkia IFS, taikymu. Al-
goritmo naujumas grindziamas dviem faktoriais. Pirma, sudaryta nauja originali IFS stidaran
afiniuju transformacij veikimo zony atskyrimo strategija. Antra, realizuota sintezuojamo frak-
talinio vaizdo taSl kintamo pabgimo laiko idkja. Atlikti eksperimetai rodo, jog abu pamiti
faktoriai salygoja tolyg) spalvin vaizdo uzpildyna.



