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Abstract. The contribution of this paper is a new version of the escape time algorithm adapted
to synthesize fractal images, identified with attractors of iterated function systems (IFS). The pro-
posed synthesis algorithm is based on the use of shift dynamics, associated with one or another IFS.
The novelty of the algorithm is grounded on two factors. Firstly, the strategy for the separation of
extended domains of the inverse affine transformations, specified by IFS, is developed. Secondly,
the variable escape time for different points of a synthesized fractal image (IFS attractor) is pro-
posed and explored. Experimental results show that the above two factors ensure uniform rendering
of image points (pixels) in colour.
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1. Introduction

Throughout the last decade development and implementation of fractal image processing
technologies was an area of increasing interest. Much was done in preparing and matur-
ing diversified fractal image encoding (compression) ideas (Jacquin, 1992; Fisher, 1994;
Wohlberg and Jager, 1999; Valantinaset al., 2002). Constant attention was paid to fractal
modelling, to the analysis and synthesis of fractal images (Turneret al., 1998; Peitgen
et al., 1992). Elements of fractal geometry (fractal dimension, fractal interpolation, frac-
tal calculus) were put to work in real-world applications (Barnsley, 1993; Evans, 1997;
Yokoyaet al., 1989).

In the field of computerized real-world image models (digital images) the fractal ap-
proach is of outmost importance, because itfacilitates perception and understanding of
the information content of an image. To say more, it provides us with a powerful means to
catch sight of a fundamental real world image property generally known as self-similarity.
Due to this property, the research and development of algorithms (“fractal techniques”)
to extract important fractal parameters from appropriate digital data has received signif-
icant attention in recent years. Most rapidly developing areas (let us emphasize it once
again) are the use of fractal geometry for synthesizing images, for recognizing patterns
in images and performing image data compression. Moreover, the latter areas are closely
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intertwined. Say, the problem of synthesizing (fractal) images is far from being an end
in itself. Well-known fractal image compression technologies (Barnsley and Hurd, 1993;
Fisher, 1994), without exception, employ fractal image synthesis procedures at the image
decoding stage. From this point of view, any attempts to develop, to modify and to put
into practice one or another fractal image processing (synthesizing) technique or idea are
worthy of great praise.

In this paper, the basic concepts and ideas that are neededto describe, state and solve
the problem of synthesizing fractal images, identified with the attractors of iterated func-
tion systems (IFS), are introduced and explored (Section 2). In the centre of attention – the
shift dynamical system, which generates fractal images (attractors of IFS). A new origi-
nal approach (idea), leading to practical implementation of the above dynamical system,
is proposed (Sections 3, 4 and 5). A number of experimental results are given (Section 6).

2. Creating Fractal Images – Attractors of IFS

Let (R2, d) be a Euclidean metric space and(H(R2), h) denote the corresponding
(fractal) space of nonempty closed subsets, with the Hausdorff distance (metric)h =
max{d(A, B), d(B, A)}, where

d(A, B) = max
P∈A

{
d(P, B)

}
, d(P, B) = min

Q∈B

{
d(P, Q)

}
,

for all A, B ∈ H(R2); d(B, A) is defined similarly.
Let ωi: R2 → R2, i = 1, 2, . . . , N , be a contractive affine transformation on the

metric space(R2, d), i.e.,∀P (x, y) ∈ R2: ωi(P ) = ωi(x, y) = (aix + biy + ei, cix +
diy + fi), whereai, bi, ci, di, ei, fi ∈ R, and let

si = sup
{

ŝi

∣∣d(
ωi(P ), ωi(Q)

)
� ŝi · d(P, Q), P, Q ∈ R2

}
indicate the (global) contractivity factor forωi; 0 � si < 1, i = 1, 2, . . . , N . In what
follows, the metric space(R2, d) together with a finite set of contractive affine transfor-
mationsωi: R2 → R2, i = 1, 2, . . . , N , is called an iterated function system (IFS) and is
denoted by IFS{R2; ω1, ω2, . . . , ωN}.

Let us move the above affine transformations into the space(H(R2), h). Then
ωi: H(R2) → H(R2), defined byωi(B) = {ωi(Q)|Q ∈ B}, ∀B ∈ H(R2), is a contrac-
tive affine transformation on(H(R2), h), with contractivity factorsi, i = 1, 2, . . . , N .

Combiningωi: H(R2) → H(R2), i = 1, 2, . . . , N , we produce a new transformation
W : H(R2) → H(R2) on the fractal space(H(R2), h), namely:

W (B) = ω1(B) ∪ ω2(B) ∪ . . . ∪ ωN(B) =
N⋃

i=1

ωi(B),

for all B ∈ H(R2). We note here that the latter transformation is also contractive, i.e.,
h(W (B), W (C)) � s · h(B, C), for all B, C ∈ H(R2); heres = max{s1, s2, . . . , sN}.
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The only fixed pointA ∈ H(R2) of W , such that

A = W (A) =
N⋃

i=1

ωi(A) = lim
n→∞

(W ◦ W ◦ . . . ◦ W )(B)

= lim
n→∞

(
W 0n

)
(B), ∀B ∈ H(R2),

represents an attractor (fractal image, fractal) of the IFS (Barnsley, 1993).
Among the algorithms, applied to creating attractors of IFS, we find the following

ones – the photocopy (deterministic) algorithm, the random iteration algorithm and the
escape time algorithm. The former two algorithms, roughly speaking, are based on the
definition of the attractor of an IFS, i.e., explore the fact that the set (attractor, fractal
image)A is an attractive fixed point forW : H(R2) → H(R2). These algorithms are
reasonably fast and can be used to create sufficiently realistic images.

The third (escape time) algorithm is of particular interest. Usually, it is applied to
the analysis of nonlinear mappings in a complex plane C, i.e., to the study of dynamical
systems{C; f} and their orbits, wheref : C → C is a single non-contractive transfor-
mation. It appears that such dynamical systems are sources of fractal images (Peitgen
et al., 1986). For a special class of fractal images – IFS attractors – no version of the
escape time algorithm is adapted in full. Though, the application scheme of the algorithm
is well defined and completely perceptible. We here present a brief description of the
escape time algorithm, oriented to create (synthesize) fractal images, identified with the
attractors of IFS:

1. Let an iterated function system IFS{R2; ω1, ω2, . . . , ωN}, with an attractorA =
ω1(A) ∪ ω2(A) ∪ . . . ∪ ωN (A) ∈ H(R2), be given. Assume that all affine trans-
formationsωi: A → A (i = 1, 2, . . . , N) are invertible.

2. Let {A; S} be a shift dynamical system associated with the IFS, where the shift
transformationS: A → A is defined (for alla ∈ A) as follows:S(a) = ω−1

i (a), if
a ∈ ωi(A)(i ∈ {1, 2, . . . , N}) anda /∈

⋃
j(j �=i) ωj(A); we say that the pointa is

in the domain (under the action) ofω−1
i ; S(a) = ω−1

it
(a), if a ∈ ωi1(A)∩ωi2 (A)∩

. . . ∩ ωir (A), it ∈ {1, 2, . . . , N}, t = 1, 2, . . . , r; we say that the pointa is under
the action of anyone of transformationsω−1

it
.

3. The shift dynamical system {A; S}, associated with the given IFS, is extended
to R2, i.e., a new dynamical system (an extension){R2; Ŝ} is formed. The new
shift transformation̂S: R2 → R2 is defined by the equalitŷS(P ) = ω−1

i (P ),
provided the pointP ∈ R2 is under the action of the inverse affine transformation
ω−1

i (i ∈ {1, 2, . . . , N}). In particular,Ŝ mapsA onto itself, i.e.,Ŝ coincides with
the transformationS, for all points lying on the attractorA ⊂ R2 (Fig. 1).

4. Let the set (attractor)A fall into a rectangle (viewing window)�, i.e.,A ⊂ � ⊂
R2. Then, for every pointP ∈ �, an orbit{Ŝ0n(P )}�n=1 is calculated numerically;
here	 is a priori defined number of iterations.

5. LetR be a positive number such that the ball O, centred at the symmetry centreO of
the viewing window�, contains bothA and� (Fig. 1). If, now,d(Ŝ0�(P ), O) � R,
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i.e., the orbit ofP ∈ � does not escape the ball (after	 iterations), a conclusion is
made – the pointP belongs to the attractorA (P is rendered in colour); otherwise
(d(Ŝ0�(P ), O) > R), P /∈ A.

As it can be seen, the escape time algorithm explores the fact that the setA (attractor
of the IFS, fractal image) is a repulsive fixed point for the transformation̂S: H(R2) →
H(R2). Evidently, the orbits of points that lie close to the attractorA take longer to escape
from the ball O than those of points which lie further away.

The main obstacle preventing the escapetime algorithm from being adapted to syn-
thesizing of fractal images, associated with IFS, is the following one – neither theoretical
nor empirical criteria exist for the separation of extended domains of the inverse affine
transformations. Some authors mention in passing that the extensions of the domains can
be defined with the aid of straight lines (Barnsley, 1993). Unfortunately, in a general case,
no appreciable results have been obtained and published till now.

So, broadly speaking, the search for thenamed above criteria becomes an object of
theoretical interest and theoretical investigations despite even the final outcome – practi-
cal applicability (in the efficiency sense) of the sought-for criteria themselves.

This paper introduces a new interesting approach (idea) to separating extended do-
mains (inR2) of the inverse affine transformations(Section 3). The proposed idea facili-
tates adaptation of the escape time algorithm to synthesizing of fractal images (attractors
of IFS).

Also, to ensure uniform rendering of points (pixels)P ∈ � in colour, a variable num-
ber of iterations	 = 	(P ), for different points in the viewing window�, is introduced
(Section 5).

Fig. 1. The dynamical system{R2; Ŝ} is obtained by extending the definition of the shift dynamical system
{A; S}, associated with IFS{R2; ω1, ω2, ω3}; A = ω1(A) ∪ ω2(A) ∪ ω3(A) is the IFS attractor
(Sierpinski triangle); bold type lines separateextended domains for affine transformations.
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3. Determination of Extended Domains for Inverse Affine Transformations –
Stating the Problem

Consider an IFS{R2; ω1, ω2, . . . , ωN}, whose attractor is the setA ∈ H(R2). Let us
denote the fixed point and the (global) contractivity factor ofωi (i ∈ {1, 2, . . . , N})
by Mi andsi, respectively. For more detailed description of the “behaviour” ofωi (i ∈
{1, 2, . . . , N}) in (R2, d), it is expedient to introduce a local contractivity factorsi(P ),
P ∈ R2, acting in the direction, specified by the vector

−−→
PMi, namely:

si(P ) =
√

(ai cosϕi + bi sin ϕi)2 + (ci cosϕi + di sin ϕi)2;

here:ai, bi, ci, di are parameters (real numbers) ofωi; ϕi = ϕi(P ) is the angle between−−→
PMi and the positive direction of the axis of abscissae. More convenient formula, espe-
cially for practical applications, is the following one:

si(P ) = d
(
ωi(P ), Mi

)
/d(P, Mi). (1)

Suppose, now, that{R2; Ŝ} is an extension of the shift dynamical system{A; S},
associated with the IFS. As it was mentioned above (Section 2), the shift transformation
Ŝ maps any pointP ∈ R2 into a new pointPi = Ŝ(P ) = ω−1

i (P ), providedP is under
the action ofω−1

i (i ∈ {1, 2, . . . , N}).
In a theoretical sense, for the separation of extended domains of the inverse affine

transformations, the use can be made of the following criterion

min
i∈{1,2,...,N}

{
d
(
P, ωi(A)

)
/ si(P )

}
=

1
si◦(P )

d
(
P, ωi◦(A)

)
(2)

(index i◦ shows an affine transformation, into whose domain the pointP falls in). Un-
fortunately, practical implementation of thecriterion (expression (2)) is complicated, be-
cause neither the attractorA nor its copiesωi(A), i ∈ {1, 2, . . . , N}, are known.

In this context, we are to formalize the application scheme of the escape time algo-
rithm, described in Section 2. Firstly, let us construct a setI(	) of ordered	-tuples (	 is
a positive integer), i.e.,

I(	) =
{
(i1, i2, . . . , i�)|ik ∈ {1, 2, . . . , N}, k = 1, 2, . . . ,	

}
.

Clearly, the number of elements inI(	) equalsN�.
Now, for a particular	-tuple (ordered collection of indices)(i1, i2, . . . , i�) and for

any pointP ∈ � ⊂ R2, we can compute an orbit (sequence), comprising	 points,
namely:{Pi1 , Pi1,i2 , . . . , Pi1,i2,...,i�}, where

Pi1,i2,...,ik
=

(
ω−1

ik
◦ . . . ◦ ω−1

i2
◦ ω−1

i1

)
(P ),

for all k ∈ {1, 2, . . . ,	}.
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By choosing properly both the radiusR of the ball O and the number of iterations	,
we come to the conclusion (based on the material in Section 2) – the pointP (P ∈ �)
belongs to the attractorA if and only if the condition

min
{
d(Pi1,i2,...,i� , A) | (i1, i2, . . . , i�) ∈ I(	)

}
= d(Pi◦1 ,i◦2 ,...,i◦�

, A) � R (3)

holds true; otherwise(d(Pi◦1 ,i◦2 ,...,i◦�
, A) > R), P /∈ A. Obviously, the	-tuple

(i◦1, i
◦
2, . . . , i

◦
�) ∈ I(	) indicates the case when extended domains are defined correctly

for all points in{Ŝ0n(P )}�n=1.
Mainly, on account of the inequalitydiam(A) 
 R, condition (3) can be reformu-

lated this way:

(P ∈A)⇔
(
min

{
d(Pi1,i2,...,i� , O)

∣∣(i1, i2, . . . , i�)∈I(	)
}
=d(Pi◦1 ,i◦2 ,...,i◦�

, O)�R
)
; (4)

hereO is the symmetry centre of the viewing window�.
The direct implementation of the above formal approach (criterion (4)) is problematic,

since cardinality of the setI(	) increases drastically, with the number of iterations	
increasing.

4. The New Strategy for Determination of Extended Domains – Solving the
Problem

We here present a new strategy (criterion) for the separation of extended domains (in
the Euclidean space(R2, d)) of the inverse affine transformations, associated with an
IFS{R2; ω1, ω2, . . . , ωN}. It leads to practical implementation of the condition (4) (Sec-
tion 3). The essence of the proposed criterion – the pointPi◦1 ,i◦2 ,...,i◦

k
(k ∈ {1, 2, . . . ,	−

1}) of a sequentially computed orbit{Ŝ0n(P )}�n=1, P ∈ �, is under the action of the
inverse affine transformationω−1

i◦
k+1

(i◦k+1 ∈ {1, 2, . . . , N}) if and only if:

min
ik+1,...,ik+τ∈{1,2,...,N}

{
d
(
Pi◦1 ,...,i◦

k
,ik+1,...,ik+τ

, Pi◦1 ,...,i◦
k

)}
= min

ik+2,...,ik+τ∈{1,2,...,N}

{
d
(
Pi◦1 ,...,i◦

k+1,ik+2,...,ik+τ
, Pi◦1 ,...,i◦

k

)}
(2�τ �N). (5)

In other words, to decide upon the extended domain forPi◦1 ,i◦2 ,...,i◦
k

or, what is the same,
for the separation of extended domains (inR2), the strategy “τ steps ahead” is proposed.
The strategy (criterion) is based on the following factors (easy to prove):

– if P (P ∈ R2) is in the domain of the inverse affine transformationω−1
i (i ∈

{1, 2, . . . , N}), then

d
(
ω−1

i (P ), A
)

� d
(
ω−1

j (P ), A
)
,

for all j ∈ {1, 2, . . . , N}, j �= i; this assertion follows directly from the expression
(2) (Section 3);
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– for any pointP ∈ R2 and its imagePi = ω−1
i (P ) (i ∈ {1, 2, . . . , N}) the inequa-

lity

d(Pi, P ) � d(P, A) ·
(
1 − s(P )

)
/s(P ) � d(P, A) · (1 − s)/s

is true;s(P ) = max{sj(P )|j = 1, 2, . . . , N}. It means that the distance between
two points,P andPi, increases, asP moves away from the attractorA;

– the relationship

d
(
Pi◦1 ,...,i◦�

, A
)

= min
(i◦1 ,...,i◦

k
,ik+1,...,i�)∈I(�)

{
d
(
Pi◦1 ,...,i◦

k
,ik+1,...,i� , A

)}

is valid (follows from (3)), for all values ofk (k ∈ {1, 2, . . . ,	 − 1}). Conse-
quently, the orbit{Ŝ0n(P )}�n=1 of the pointP ∈ � can be calculated in consecu-
tive order.

The obvious advantage of the proposed criterion (expression (5)) – onlyτ (τ 
	)
steps ahead are needed to decide upon the correctness of the choice of a particular ex-
tended domain for the pointPi◦1 ,i◦2 ,...,i◦

k
(k ∈ {1, 2, . . . ,	− 1}), i.e., in computing orbits

for points from the viewing window�, we avoid complete analysis of	-tuples in the
setI(	) (expression (4); Section 3). The latter analysis is replaced with the detailed in-
vestigation (at every orbit point) ofτ -tuples(i1, i2, . . . , iτ ) ∈ I(τ), where|I(τ)| = N τ ,
and	 · N τ is much less than|I(	)| = N�. At the same time, the criterion (strategy) is
comparatively simple and easy to use.

Below, we present an illustrative example where the proposed strategy “τ steps
ahead” is employed (Figs. 2, 3). We treat an IFS{R2; ω1, ω2}, whereω1 = ω1(x, y) =
(−1/

√
2y + 100, 1/

√
2x) andω2 = ω2(x, y) = (−1/

√
2y + 200, 1/

√
2x). The IFS

attractorA = ω1(A) ∪ ω2(A) = {(x, y)|0 � x � 200, 0 � y � 100
√

2} is the union of
two copies of itself, each scaled by a factor1/

√
2. The inverse transformations areω−1

1 =
ω−1

1 (x, y) = (
√

2y,−
√

2x+ 100
√

2) andω−1
2 = ω−1

2 (x, y) = (
√

2y,−
√

2x+ 200
√

2).
The dynamical system{R2; Ŝ}, defined by

Ŝ(P ) = Ŝ(x, y) =
{

ω−1
1 (x, y), x > 100,

ω−1
2 (x, y), x � 100,

is an extension of the shift dynamical system{A; S}, associated with the given IFS. The
latter assertion is based on the task-oriented analysis of points (and their orbits) from the
viewing window� (Fig. 2).

For instance, let us take a pointP (208, 100
√

2) ∈ � and construct its orbit
{Ŝ0n(P )}�n=1, using the strategy “2 steps ahead”. Firstly, the pointP itself falls into
the extended domain of the inverse affine transformationω−1

2 , since (criterion (5))

min
i1,i2∈{1,2}

{
d
(
Pi1,i2 , P

)}
= min

i2∈{1,2}

{
d
(
P2,i2 , P

)}
;
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(a)

(b)

Fig. 2. Application of the strategy “2 steps ahead”: (a) processing of the initial pointP ∈ �; (b) processing of
the pointP2 = ω−1

2 (P ).

herePi,j = (ω−1
j ◦ω−1

i )(P ), for all i, j ∈ {1, 2}; thus,i◦1 = 2 (Fig. 2a). Secondly, for the

newly obtained orbit pointP2 = P2(200,−8
√

2) = ω−1
2 (P ), application of the strategy

“2 steps ahead” leads to the following result

min
i2,i3∈{1,2}

{
d
(
P2,i2,i3 , P2

)}
= min

i3∈{1,2}

{
d
(
P2,2,i3 , P2

)}
;
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consequently, the pointP2 is under the action ofω−1
2 , i.e., i◦2 = 2 (Fig. 2b). In the

same way, it can be shown that the pointP2,2 = ω−1
2 (P2) falls into the domain ofω−1

1 ,
P2,2,1 = ω−1

1 (P2,2) – into the domain ofω−1
1 , and so on.

Now, if both the radiusR of the ball O and the number of iterations	 are fixed (say,
R = 400,	 = 14), then repeated application of the strategy “2 steps ahead” generates
an orbit{Ŝ0n(P )}14

n=1, which escapes the ball O on the 11-th iteration (Fig. 3). So, the
pointP doesn’t belong to the IFS attractorA. Similar reasoning is applicable to all points
in �.

One can easily ascertain that the computational complexity (the number of map-
pings, performed in evaluating the orbit ofP ∈ �) has been reduced considerably,
when compared with the direct implementation of the criterion (4) (Section 3). Really,
	 · N τ = 14 · 22 = 56 
 N� = 214 = 16384.

Finally, in order to simplify (optimize) calculations, one can define preliminary all
possible superpositionsω−1

i1,i2,...,iτ
: R2 → R2, specified by formulae

ω−1
i1,i2,...,iτ

(P ) =
(
ω−1

iτ
◦ . . . ◦ ω−1

i2
◦ ω−1

i1

)
(P );

ik ∈ {1, 2, . . . , N}, k = 1, 2, . . . , τ , and put them to work in deriving criterion values
(expression (5)).

It is worth emphasizing, the developed criterion “works” well, provided the dispersion
of contractivity factorssi for affine transformationsωi, i = 1, 2, . . . , N , is small enough
(|si − sj | � ∆, i = 1, 2, . . . , N ; ∆ = 0 − 0.1). In other cases, to insure higher quality
of synthesized fractal images, corrections of the number of iterations, depending on the
frequences of the inverse affine transformations (in(i◦1, i◦2, . . . , i◦�)), should be made. In

Fig. 3. The orbit{Ŝ0n(P )}14
n=1 escapes the ball O – the initial pointP doesn’t belong to the IFS attractorA.
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other words, every pointP ∈ � should be associated with its “own” escape time, i.e.,
with its “own” number of iterations	 = 	(P ).

5. Implementation of the Variable Escape Time

Consider an IFS{R2; ω1, ω2, . . . , ωN} with contractivity factors (s = max{s1, s2, . . . ,

sN}). Let M1, M2, . . . , MN denote fixed points of contractive affine transformations
ω1, ω2, . . . , ωN , respectively.

For a single affine transformationωi (i ∈ {1, 2, . . . , N}), the orbit{(ω−1
i )0n(P )}�i

n=1

of the pointP , such thatd(P, Mi) � δ (δ is a small positive number), escapes the ball
with radiusR and centre atMi if and only if

	i � log(R/δ)/ log(1/si).

To say more, ifsi > sj(i, j ∈ {1, 2, . . . , N}), then points lying in the neighbourhood of
Mj escape faster than those lying in the neighbourhood ofMi.

Based on this understanding, the following procedure, for the determination of the
number of iterations for points in a viewing window (and outside it), is proposed:

1. The initial maximal escape time (in the number of iterations)	max(P ) for the
pointP ∈ �, which falls into the extended domain ofω−1

i◦1
(i◦1 ∈ {1, 2, . . . , N}), is

found:

	max(P ) � − log(R/δ)/ log si◦1
, (6)

whereR is the radius of the ball O, containing both the attractorA of the IFS and
the viewing window�; si◦1

is the (global) contractivity factor forω−1
i◦1

; for practical
applications,δ = 0.1 − 1.5.

2. LetPi◦1 ,i◦2 ,...,i◦
k

be thek−th point in the orbit ofP ∈ �, and the number of iterations
(escape time) left equal	left (initially, 	left = 	max(P )). Now, if Pi◦1 ,i◦2 ,...,i◦

k
is

under the action of the inverse affine transformationω−1
i◦
k+1

(i◦k+1 ∈ {1, 2, . . . , N}),
then the next orbit pointPi◦1 ,i◦2,...,i◦

k+1
is computed, and the number	left undergoes

corrections:

	left := 	left −
log si◦

k+1
(Pi◦1 ,i◦2 ,...,i◦

k+1
)

log si◦1

, (7)

where the local contractivity factorsi◦
k+1

(Pi◦1 ,i◦2 ,...,i◦
k+1

) is found using formula (1)
(Section 3), i.e.,

si◦
k+1

(Pi◦1 ,i◦2 ,...,i◦
k+1

) =
d(Pi◦1 ,i◦2 ,...,i◦

k
, Mi◦

k+1
)

d(Pi◦1 ,i◦2 ,...,i◦
k+1

, Mi◦
k+1

)
.

3. If 	left < 0, the condition (4) (Section 3) is verified. Computing of the orbit (for
P ) is terminated. If	left � 0, thenk := k + 1 and the move to step 2 is made.
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4. The pointP ∈ � is rendered in colour.

Finally, if a given IFS{R2; ω1, ω2, . . . , ωN} contains only similarity transformations,
then their contractivity factors, being invariant with respect to a chosen direction, can be
computed once and beforehand. It leads to some time savings in applying the proposed
synthesis algorithm (expressions (4)–(7); Sections 3–5).

6. Experimental Results

Computer realization (programming language C#.NET) of both the proposed criterion
for the determination of extended domains for inverse affine transformations and the new
version of the escape time algorithm, adapted to synthesizing of fractal images, identified
with attractors of IFS, was done. Some experimental (synthesis) results are presented
below (Figs. 4–6).

Extended domains for the inverse affine transformations, associated with the
IFS{R2; ω1, ω2} (ω1: a1 = −0.5, b1 = −0.5, c1 = 0.5, d1 = −0.5, e1 = −48.8,
f1 = 8; ω2: a2 = 0.5, b2 = −0.5, c2 = 0.5, d2 = 0.5, e2 = −86.8, f2 = 58.4) and
the IFS{R2; ω1, ω2, ω3} (ω1: a1 = 0.5; b1 = 0, c1 = 0, d1 = 0.5, e1 = 0, f1 = 0;
ω2: a2 = 0.28, b2 = −0.4, c2 = 0.4, d2 = 0.28, e2 = 134, f2 = 8; ω3: a3 = 0.5,
b3 = 0, c3 = 0, d3 = 0.5, e3 = 8, f3 = 0), are shown in Fig. 4 (fixed points of the affine
transformations are coloured in black). Synthesis results (fractal images, attractors of the

(a)

(b)

Fig. 4. Extended domains for the affine transformations: (a) IFS{R2; ω1, ω2}; (b) IFS{R2; ω1, ω2, ω3}.
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(a) (b)

(c)

Fig. 5. Synthesis results – IFS{R2; ω1, ω2}: (a)R = 500; δ = 1; (b) R = 500; δ = 0.75;
(c) R = 500; δ = 0.15.

(a) (b)

Fig. 6. Synthesis results – IFS{R2; ω1, ω2, ω3}: (a)R = 700; δ = 1; (b) R = 700; δ = 0.4.

above IFS) are presented in Figs. 5, 6. As it can be seen, the quality of synthesized frac-
tal images highly depends on the initially prescribed number of iterations (escape time)
	max, which, in its turn, is a function of the parameterδ. To say more, the latter param-
eter enables us to balance between “poorness”and “coarseness” of the resulting images
(Fig. 5).

Computational time of the developed synthesis algorithm depends on the number of
affine transformations entering a particular IFS. Preliminary results show that the algo-
rithm is slower, when compared with the random iteration algorithm, but is slightly faster
than the deterministic one.
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7. Conclusion

Various algorithms for the synthesis of fractal images, identified with the attractors of
iterated function systems (IFS) are known, namely: the photocopy (deterministic) algo-
rithm, the random iteration algorithm and the escape time algorithm. The former two
algorithms, roughly speaking, are based on the definition of the attractor of an IFS. The
third (escape time) algorithm is characterized as being more universal, and, as a rule,
is applied to the analysis and visualization of nonlinear mappings, acting in a complex
plane. Unfortunately, no version of the latter algorithm is adapted to create fractal images,
identified with the attractors of IFS.

The main and serious obstacle in exploring this algorithm – rather complicated and
embarrasing determination of extended domains (in a Euclidean space) for the inverse
affine transformations, comprising the shift dynamical system, associated with one or
another IFS.

In the paper, a new original criterion (strategy) for the separation of the said extended
domains is proposed. The criterion creates conditions for the adaptation of the escape time
algorithm to the synthesis of attractors (fractal images) of IFS of various types (totally
disconnected, just-touching, overlapping). The criterion itself relies upon the sequential
realization of the shift dynamical system mentioned above.

The preliminary experimental results show that the new version of the escape time
algorithm proved correct. To say more, the obvious theoretical result was gained – the
“escape times” idea was fitted to the synthesis of IFS attractors.

In the future, some additional analysis, concerning the quality of synthesized fractal
images (in particular, with respect to their fractal dimension) is supposed. In parallels,
justified applicability of the developed image synthesis approach to fractal image deco-
ding procedures is planned too.
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Poslinki ↪u dinamikos taikymas sintezuojant fraktalinius vaizdus

Jonas VALANTINAS, Tomas ŽUMBAKIS

Šiame straipsnyje pateikiama nauja pabėgimo laiko algoritmo versija, adaptuota sintezuoti frak-
taliniams vaizdams, tapatinamiems su iteruot↪uj ↪u funkcij ↪u sistem↪u (IFS) atraktoriais. Sīulomas sin-
teżes algoritmas remiasi tiksliniu poslinki↪u dinamikos, aprašomos konkrečia IFS, taikymu. Al-
goritmo naujumas grindžiamas dviem faktoriais. Pirma, sudaryta nauja originali IFS sudaranči ↪u
afini ↪uj ↪u transformacij↪u veikimo zon↪u atskyrimo strategija. Antra, realizuota sintezuojamo frak-
talinio vaizdo tašk↪u kintamo paḃegimo laiko iḋeja. Atlikti eksperimentai rodo, jog abu pamiṅeti
faktoriai s↪alygoja tolyg↪u spalvin↪i vaizdo užpildym↪a.


