
INFORMATICA, 2004, Vol. 15, No. 4, 551–564 551
 2004Institute of Mathematics and Informatics, Vilnius

Text Categorization Using Neural Networks
Initialized with Decision Trees

Nerijus REMEIKIS, Ignas SKǓCAS, Vida MELNINKAITĖ
Faculty of Informatics, Vytautas Magnus University
Vileikos 8, 3035 Kaunas, Lithuania
e-mail: nerijus_remeikis@fc.vdu.lt, ignas_skucas@fc.vdu.lt, vida_melninkaite@fc.vdu.lt

Received: September 2004

Abstract. Text categorization – the assignment of natural language documents to one or more
predefined categories based on their semantic content – is an important component in many infor-
mation organization and management tasks. Performance of neural networks learning is known to
be sensitive to the initial weights and architecture. This paper discusses the use multilayer neural
network initialization with decision tree classifier for improving text categorization accuracy. De-
cision tree from root node until a final leave is usedfor initialization of eachsingle unit. Growing
decision trees with increasingly larger amounts of training data will result in larger decision tree
sizes. As a result, the neural networks constructed from these decision trees are often larger and
more complex than necessary. Appropriate choice of certainty factor is able to produce trees that are
essentially constant in size in the face of increasingly larger training sets. Experimental results sup-
port the conclusion that error based pruning can be used to produce appropriately sized trees, which
are directly mapped to optimal neural network architecture with good accuracy. The experimental
evaluation demonstrates this approach provides better classification accuracy with Reuters-21578
corpus, one of the standard benchmarks for text categorization tasks. We present results comparing
the accuracy of this approach with multilayer neural network initialized with traditional random
method and decision tree classifiers.
Key words: text classification, decision trees, neural networks.

Introduction

As the volume of information continues to increase, there is growing interest in helping
people better find, filter, and manage these resources. Text categorization – the assign-
ment of natural language documents to one or more predefined categories based on their
semantic content – is an important component in many information organization and
management tasks. Automatic text categorization task can play an important role in a
wide variety of more flexible, dynamic and personalized tasks as well: real-time sorting
of email or files, document management systems, search engines, digital libraries, deci-
sion support systems for design. Text categorization is now being applied in many con-
texts, ranging from document indexing based on a controlled vocabulary, to document
filtering, automated metadata generation, word sense disambiguation, population of hier-
archical catalogues of Web resources, and in general any application requiring document
organization or selective and adaptive document dispatching.

552 N. Remeikis, I. Skučas, V. Melninkaitė

A number of statistical classification methods and machine learning techniques have
been applied to text categorization, including techniques based on decision trees (Lewis
and Ringuette, 1994), neural networks (Wieneret al., 1995), Bayes probabilistic ap-
proaches (Lewis and Ringuette, 1994). However there is still need more accurate text
classifiers based on new learning approaches.

The purpose of the current work is to describe ways in which hybrid approach can
be applied to the problem of text categorization, and to test its performance relative to a
number of other text categorization algorithms. In this paper, we introduce the use of a
hybrid decision tree and neural network technique to the problem of text categorization,
because hybrid approaches can simulate human reasoning in a way that a decision tree
learning is used to do qualitative analysis and neural learning is used to do subsequent
quantitative analysis. Our approach is based on hybrid algorithm, which was described in
paper (Banerji, 1997) and has been shown to perform well on standard machine learning
tasks. The main idea of this method is to transform decision trees to neural networks.
Our proposed hybrid approach for text categorization task constructs the networks by
directly mapping decision nodes or rules to the neural units and compresses the network
by removing unimportant and redundant units and connections.

Problem Definition

Automatic text categorization has always been an important application and research
topic since the inception of digital documents. The text classification task can be de-
fined as assigning category labels to new documents based on the knowledge gained in a
classification system at the training stage.A wide range of supervised machine learning
algorithms has been applied to this area using a training data set of categorized docu-
ments. Although text classification performance results has been quite encouraging, but
there is still need more accurate text classifies based on new learning approaches (Sebas-
tiani, 2002).

Performance of neural networks learning is known to be sensitive to the initial weights
and architecture – number of hidden layers and neurons in these layers. Traditionally, the
initial values of weights are determined randomly in the backpropagation neural network
(BPN) and modified by the generalized delta rule. Although the BPN has been imple-
mented in many applications, it still has some major drawbacks; namely, its convergence
tends to be very slow, the optimal number of hidden nodes is difficult to determine, and
usually it does not yield optimal solutions. Usefulness of good initialization, effect of
initial values, prior weights are discussed in (Raudys, 2001). Recently, pattern recogni-
tion techniques have been used to initialize weights. Raudys and Skurichina (1992) used
a piece-wise linear classiffier to initialize hidden layer weights of the three-layer neural
network. In (Sethi, 1991; Banerji, 1997) decision tree was applied to initialize the neural
network. These methods typically construct the networks by directly mapping decision
nodes or rules to the neural units. Text categorization datasets are large and increases very
rapidly. Growing decision trees with increasingly larger amounts of training data will re-
sult in larger decision tree sizes. As a result, the neural networks constructed from these
decision trees are often larger and more complex than necessary.

Text Categorization Using Neural Networks Initialized with Decision Trees 553

Error based pruning can be used to prune a decision tree. It uses a parameter, the
certainty factor, which affects the size ofthe pruned tree. Here, we show that varying
the certainty factor allows significantly smaller trees to be obtained with minimal or no
accuracy loss. Also, appropriate choice of certainty factor is able to produce trees that are
essentially constant in size in the face of increasingly larger training sets. Experimental
results support the conclusion that error based pruning can be used to produce appropri-
ately sized trees, which are directly mapped to optimal neural network architecture with
good accuracy.

This paper presents our attempt to improvetext classification accuracy by neural net-
work initialized with decision tree classifier and to compare classification performance to
previous results.

Decision Tree Mapping to Neural Network

Decision Tree Construction Algorithm

Algorithm constructs the decision tree with adivide and conquer strategy. Each node in
a tree isassociated with a set of cases. At the beginning, only the root is present, with
associated the whole training set and withall case weights equal to 1. At each node the
following divide and conquer algorithm is executed, trying to exploit the locally best
choice, with no backtracking allowed.

Let T be the set of cases associated at the node. The weighted frequencyfreq(Ci, T)
is computed of cases inT whose class isCi, i ∈ [1, N]. If all cases inT belong to a same
classCj (or the number of cases inT is less than a certain value) then the node is a leaf,
with associated classCj .

If T1, . . . , Ts are the subsets ofT andT contains cases belonging to two or more
classes, then theinformation gain of each attribute is calculated:

I = H(T) −
s∑

i=1

|Ti|
|T | × H(Ti), (1)

where

H(T) = −
n∑

j=1

freq(Cj , T)
|T | × log2

(freq(Cj , T)
|T |

)
(2)

is the entropy function.
While having an option to select information gain, by default, however, C4.5 (Quinlan,

1993) considers theinformation gain ratio of the splittingT1, . . . , Ts which is the ratio
of information gain to its split information:

S(T) = −
s∑

i=1

|Ti|
|T | × log2

(|Ti|
|T |

)
. (3)

554 N. Remeikis, I. Skučas, V. Melninkaitė

Training Multilayer Neural Network

Neurons in the input layer only act as buffers for distributing the input signalsxi to
neurons in the hidden layer. Each neuronj in the hidden layer sums up its input signals
xi after weighting them with the strengths of the respective connectionswji from the
input layer and computes its outputyj as a functionf of the sum as follows

yj = f

(∑
wjixi

)
, (4)

wheref can be a simple threshold function, a linear or a sigmoid function.
There are many available learning algorithms in the literature (Rumelhart and Mc-

clelland, 1986; Haykin, 1994). Backpropagation with momentum is the most commonly
adopted neural network training algorithm (Rumelhart and Mcclelland, 1986). The back-
propagation algorithm employs a gradient descent technique to adopt the neural network
weights to minimise the mean squared difference between the ANN output and the de-
sired output. Mean square error of one output neuron over alln examples is difference
between the targett and actuala network output:

mse =
1
n

n∑
i

(
t(i) − a(i)

)2
, (5)

The change in weight∆wji(k) between neuronsi andj is as follows

∆wji(k) = ηδjxi + α∆wji(k − 1), (6)

whereη is a parameter called the learning coefficient,αis the momentum coefficient, and
δj is a factor depending on output neuron or a hidden neuron. For output neurons

δj =
∂f

∂netj
(yj − ynetj), (7)

wherenetj =
∑

i xiwji, yj , ynetj are the target and the neural outputs for neuronj,
respectively. For hidden neurons

δj =
∂f

∂netj

∑
q

wqjδq. (8)

As there are no target outputs for hidden neurons in (4), the difference between the
target and the actual neural output of a hidden neuronj is replaced by the weighted
sum of theδq terms already obtained for neuronsq connected to the output ofj. Thus,
iteratively, beginning with the output layer, theδ term is computed for neurons in all
layers and weight updates determined for all connections according to (5).

Training a neural network by backpropagation with momentum training algorithm
to computey involves presenting it sequentially with different training sets. Differences

Text Categorization Using Neural Networks Initialized with Decision Trees 555

between the target output and the actual output of the neural network are backpropagated
through the network to adapt its weights using (5)–(7). The adaptation is carried out after
the presentation of each set. Each trainingepoch is completed after all patterns in the
training set have been applied to the networks.

Decision Tree Error-Based Pruning

In general, a decision tree can be grown so as to have zero error on the training set. Also,
in general, over-fitting occurs and the tree needs to be pruned in order to generalize well
on the test set.

Error-based pruning considers theE errors among theN training examples at a leaf
of the tree to give an estimate of the error probability for that node. The assumption is
that these areE events inN independent trials which is, of course, not perfectly true. We
want to know what the observed result tellsus about the probability of an error over the
entire population of examples that will end up at the leaf. Using the binomial theorem,
confidence limits can be calculated for the probability of error for a given confidence
level. The confidence level is the certainty factor parameterCF. The upper limit of the
probability is found. Given this value the predicted number of errors for each leaf of a
test node being considered for pruning can becalculated by multiplying the number of
examples at the leaf by the upper limit of the probability confidence limit. The predicted
number of errors if a node was a leaf can be calculated from the observed number of
errors after its leaves are collapsed. The leaves are pruned if the number of predicted
errors after pruning is less than the sum of predicted errors across the leaves. The smaller
the CF becomes the more certain we are that the confidence interval contains the true
probability of error. That is, the confidence interval is wider, and the upper limit on the
probability that a particular example is in error is higher, making an example more likely
to be incorrect and hence more pruning will be done. With aCF = 100 we have no
confidence that the true error is in the interval and would simply take the observed error
rate at the leaf.

The first thing to recognize is that a tree pruned atCF2 can be obtained by pruning
the tree pruned atCF1 whenCF1 > CF2. So, the search for the appropriate certainty
factor would consist of choosing an initial certainty factor,CFi, for pruning and then
evaluating the resultant tree on the validation set to determine its accuracy. Next, choose
a new certainty factor lower than the last and prune the pruned tree. Evaluate the resultant
tree on the validation set. Continue creating new pruned trees until the stopping criterion
is met.

Neural Network Initialization with Decision Tree Classifier

If we compare decision trees and neural networks we can see that their advantages and
drawbacks are almost complementary. For instance humans easily understand knowledge
representation of decision trees, which is not the case for neural networks. Decision trees
have trouble dealing with noise in training data, which is again not the case for neural

556 N. Remeikis, I. Skučas, V. Melninkaitė

networks, decision trees learn very fast and neural networks learn relatively slow, etc.
Our idea was to combine decision trees and neural networks in order to combine their
advantages. That is why we developed a combined approach for building decision trees.

First we build a decision tree that is then used to initialize a neural network. Such a
network is then trained using the same training objects.

The source decision tree is converted to a disjunctive normal form, which is a set of
normalized rules. Then the disjunctive normal form serves as source for determining the
neural network’s topology and weights. The neural network has two hidden layers. The
number of neurons on each hidden layer dependson rules in the disjunctive normal form.
The number of neurons in the output layer depends on how many outcomes are possible
in the training set. The conversion is described in the next steps (Fig. 1):

1. Build a decision tree using (1)–(3).
2. Every path from the root of the tree to every single leaf is presented as a rule.
3. The set of rules if transformed into the disjunctive normal form, which is minimal

representation of original set of rules.
4. In the input layer create as many neurons as there are attributes in the training set.
5. For each literal in the disjunctive normal form there is a neuron created in the first

hidden layer (literal layer) of a neural network.
6. Set weights for each neuron in the literal layer, that represents a literal in the form

(attribute > value) tow0 = −σ ∗ value for each literal in the form (attribute�
value) tow0 = σ ∗ value. Set all the remaining weights to+β or −β with equal
probability. Constantσ = 5 and constantβ = 0.025. These values were determined
by cross validating on an artificially created dataset.

7. For every conjunction of literals create a neuron in the second hidden layer (con-
junctive layer).

8. Set weights that link each neuron in the conjunctive layer with the appropriate
neuron in the literal layer tow0 = σ ∗ (2n − 1)/2, wheren is a number of literals
in the conjunct. Set all the remaining weights to+β or−β with equal probability.

9. For every possible class create a neuron in the output layer (disjunctive layer).
10. Set weights that link each neuron in the disjunctive layer with the appropriate neu-

ron in the conjunctive layer tow0 = −σ ∗ (1/2) Set all remaining weights to+β

or−β with equal probability.
11. Train the neural network with the same training objects as were used for training

the decision tree using (4)–(8).

Such network is then trained using backpropagation. Mean square error of such net-
work converges toward 0 much faster than it would in the case of randomly set weights
in the network. Even if we would use neural network before the backpropagation stage,
it would already give good results.

Fig. 1 depicts a typical decision tree that might be generated by decision tree algorithm
using (1)–(3). This decision tree could be expressed equivalently, as following rules in
disjunctive normal form:

(Attribute1 < 5) ∨ ((Attribute1 � 5) ∧ (Attribute2 < 8)) ⇒ Category1.
(Attribute1 � 5) ∧ (Attribute2 � 8) ⇒ Category2.

Text Categorization Using Neural Networks Initialized with Decision Trees 557

Fig. 1. Transformation of decision tree to neural network.

The technique creates four nodes in the literal layer that corresponds to
(Attribute1 < 5), (Attribute1 � 5), (Attribute2 < 8), (Attribute2 � 8). The literal
(Attribute1 < 5) is characterized by the hidden node that has a bias of 25 and a weight
of −5 on the input edge fromAttribute1. The other nodes in the literal layer represent,
in order(Attribute1 � 5), (Attribute2 < 8), (Attribute2 � 8). Three nodes are gen-
erated in the conjunction layer for(Attribute1 < 5), (Attribute1 � 5)∧(Attribute2 <

8), (Attribute1 � 5)∧ (Attribute2 � 8). For each such node, the weights on the edges
from relevant nodes in the literal layer are set to 5, and the bias of the node is set to
−(5n − 2.5), wheren denotes the number of literals in the disjunct. Two nodes are cre-
ated in the output (disjunction) layer, one eachfor the two classes. The execution of this
step is identical to the previous step. The bias of the nodes is set to−2.5. A final step
connects each node in a layer to nodes in the previous and the next layer that remains dis-
connected from it after the mentioned procedure. The weights on these edges are set to
0.025 and−0.025 with equal probabilities. Fig. 1 depicts the skeletal network generated
prior to the final step.

Experiment and Results

Text Corpora

It is hard to find standard benchmark sets fortext classification, where each method can
be tested and its performance compared reliably with other methods. The Reuters sets are
a notable exception. This collection consists a set of newswire stories classified under cat-
egories related to economics. Although different versions are available, many researchers

558 N. Remeikis, I. Skučas, V. Melninkaitė

use it for benchmarking. We will use the ApteMod version of Reuters-21578 (Yang and
Liu, 1999). The ApteMod set has 7769 documents for training and 3019 for testing, after
stemming and stop word removal 24240 unique terms remain. The Aptemod version has
an average of 1.3 categories per document, with a total of 90 categories that occur in both
sets.

Feature Selection and Extraction

In text categorization, features are often measures of frequencies of words appearing in
a document. Feature selection chooses which features to be used in classification. It is
preferable to use less features than the rawmeasurements (say, frequency of each word),
so that classification will be performed in a feature space of a lower dimensionality. By
reducing the dimensions of the feature space,it not only increases the efficiency of the
training and test processes, but also reduces the risk of overfitting the model to data.
Feature extraction computes the chosen features from an input document. In statistical
classification, features are represented in anumerical vector, which is subsequently used
by the classifiers. Feature selection involves stop word removal, stemming, and term se-
lection:

• Stop Word Removal.Words used in text indexing and retrieval are called terms.
According to the term discrimination model, moderate frequency terms discrimi-
nate the best. High frequency words, which are calledstop words, have low infor-
mation content, and therefore have weak discriminating power. They are removed
according to a list of common stop words.

• Stemming.Stemming reduces morphological variants to the root word. For exam-
ple, “asks”, “asked”, and “asking” are all reduced to “ask” after stemming. This
relates the same word in different morphological forms and reduces the number of
distinctive words. ThePorter stemmer is a commonly used stemmer (Frakes and
Baeza–Yate, 1992).

• Term Selection.Even after the removal of stop words and stemming, the num-
ber of distinct words in a document set may still be too large, and most of them
appear only occasionally. In addition to removing high frequency words, the term
discrimination model suggests that low frequency words are hard to learn about
and therefore do not help much. They should be removed to reduce the dimensions
of the vector space as well. We used information gain selection method (Yang and
Pedersen, 1997).

• Feature Extraction. After the terms are selected, for each document a feature vec-
tor is generated whose elements are the feature values of each term. A commonly
used feature value is theterm frequency (number of occurrence of a term in a doc-
ument).

Classification

A number of classifiers have been tried on text categorization. In our experiment, we
focused on the evaluation of the neural network initialized with decision tree classifier

Text Categorization Using Neural Networks Initialized with Decision Trees 559

on text categorization. We compare its accuracy to those of classical decision tree C4.5
(Quinlan, 1993) and neural network initialized with random initial weights. Other the er-
ror back-propagation neural networks parameters that have been used in the experiments:

• learning rate – 0.3;
• momentum 0.1;
• number of iteration – 100.

Evaluation

The performance of category ranking can be evaluated in terms ofprecision andrecall,
computed at any threshold on the ranked list of categories of each document. The category
assignment of a binary classifier can be evaluated using a two-way contingency table
(Table 1).

The relationship between the system classification and the expert judgment is ex-
pressed using four values as shown in Table 1. Precision is defined asa/(a + b), and
recall is defined asa/(a + c).

For evaluating performance average across categories, there are two conventional
methods, namely macro-averaging and micro-averaging. Macro-averaged performance
scores are computed by first computing the scores for the per-category contingency ta-
bles and then averaging these per-category scores to compute the global means. Micro-
averaged performance scores are computed by first creating a global contingency table
whose cell values are the sums of the corresponding cells in the per-category contingency
tables, and then use this global contingency table to compute the micro-averaged per-
formance scores. There is an important distinction between macro-averaging and micro-
averaging. Micro-averaging performancescores give equal weight to every document,
and is therefore considered a per-document average. Likewise, macro-average perfor-
mance scores give equal weight to every category, regardless of its frequency, and is
therefore a per-category average.

Results

Decision tree size grows approximately linearly with increasingly larger amounts train-
ing set size. Neural networks constructed from these trees are often larger than necessary.
Large networks take a long time to learn, and tend to give accurate classification re-
sults for training data, but not for unknown test data. There are various approaches to

Table 1

The decision matrix for calculating the classification accuracy

Expert YES Expert NO

System YES a b

System NO c d

560 N. Remeikis, I. Skučas, V. Melninkaitė

pruning decision trees, including error-based pruning, reduced error pruning, minimum
description length pruning, and others (Quinlan, 1993). One well-known element of ma-
chine learning folklore is that decision tree pruning methods generally do not prune hard
enough. Here we will showthat, in general, an appropriatesetting of the certainty factor
for error-based pruning will cause decision tree size to plateau.

Fig. 2 shows results obtained with the Reuters-21578 data set. The training set size is
varied from 1000 to 9584. Data is plotted as the error-based pruning certainty parameter
is varied across values of 25 (the default), 10, 1, 0.1, 0.01, 0.001, 0.0001, 0.00001. The
curve for the default certainty factor growslinearly. However, the family of curves clearly
shows that the behavior depends on the value of the certainty factor. If the certainty factor
is set as low as 0.001, then the average tree size varies between 61 and 373 over all
training set sizes. That is, the tree size is minimal and optimal, just as desired.

The proposed technique was compared to backpropagation neural network with
weights initialized randomly. Mean square error convergence is presented graphically
in Fig. 3. Mean square error of neural network initialized with decision tree converges
toward 0 much faster than in the case of randomly set weights.

For evaluating the effectiveness of our system, we used the breakeven points. The
breakeven point is the point at which precision equals recall. Table 2 summarizes perfor-
mance for our proposed neural network initialized with pruned decision tree, Banerjee
classifier and to previous results achieved by neural networks and decision trees classi-
fiers (Sebastiani, 2002). The measures used are precision/recall-breakeven point, micro-
average and macro-average on ten most populated Reuters categories and over all cate-
gories.

On the Reuters data our hybrid approach performs best among other given methods.
Slightly worse perform Banerjee neural network and decision tree classifers. Neural net-
work initialized with traditional random method shows the worst results.

Fig. 2. Low certainty factor can give constant tree size with added training data.

Text Categorization Using Neural Networks Initialized with Decision Trees 561

Fig. 3. Mean square error convergence.

Table 2

Precision/recall-breakeven point for ten most populated Reuters categories and micro averaged, macro averaged
performance over all categories

Category
Proposed

approach (%)
Hybrid approach
(Banerjee) (%)

Neural networks
(%)

Decision trees
(%)

Acq 91.9 89.9 84.2 85.3

Corn 88.3 82.3 62.7 87.7

Crude 78.1 77.0 58.4 75.5

Earn 97.2 89.2 85.6 96.1

Grain 89.3 72.1 56.4 89.1

Interest 73.1 70.1 60.8 49.1

money-fx 70.4 72.4 62.3 69.4

Ship 81.2 73.2 67.6 80.9

Trade 76.7 69.7 59.2 59.2

Wheat 88.5 86.5 46.9 85.5

Micro-avg 83.8 81.8 68.2 79.4

Macro- avg 81.24 78.24 64.40 77.78

Conclusions

This paper discussed a neural network initialization technique for text categorization. It
employs the use of neural networks initialized with decision tree classifier. Our study
provides evidence that hybrid approach can be used for the construction of effective clas-
sifiers for automatic text categorization. We have presented a hybrid decision tree and
neural network algorithm for building the classifier.

The method presented in this has some advantages over (Sethi, 1991; Banerji, 1997)

562 N. Remeikis, I. Skučas, V. Melninkaitė

method. Decision tree size grows approximately linearly with increasingly larger amounts
training set size. Neural networks constructed from these trees are often larger and com-
plex than necessary. When the certainty factor value is appropriately tuned for the data
set, error-based pruning can give trees that are essentially constant in size regardless of
the increasingly larger amount of training data. The solution for choosing the certainty
factor is given in this paper. This generallyrequires values of the certainty factor much
smaller than the default value. Appropriate choice of certainty factor is able to produce
trees that are essentially constant in size in the face of increasingly larger training sets. Ex-
perimental results support the conclusion that error based pruning can be used to produce
appropriately sized trees, which are directly mapped to optimal neural network architec-
ture with good accuracy.

This paper showed that hybrid decision tree and neural network approach improved
accuracy in text classification task and are substantially better than single decision tree or
neural network initialized randomly text classifiers performance comparable to previous
results.

Although encouraging results have been obtained using hybrid approach based clas-
sifier, there is still much work remaining to be investigated. They include to create new
decision tree construction algorithm for textual data and to determine how much it has an
effect on hybrid classifier accuracy. These issues are left for our future works.

References

Banerjee, A. (1997). Initializing neural networks using decision trees.Computational Learning Theory and
Natural Learning Systems, IV , 3–15.

Frakes, W., and R. Baeza–Yates (1992).Information Retrieval: Data Structures & Algorithms. Prentice Hall.
Haykin, S. (1994).Neural Networks: A Comprehensive Foundation. Macmillan College Publishing Comp., New

York.
Yang, Y., and J. Pedersen (1997). A comparative studyon feature selection in text categorization. InProceedings

of ICML-97, 14th International Conference on Machine Learning, Nashville, US. pp. 412–420.
Yang, Y., and X. Liu (1999). A re-examination of text categorization methods. InProceedings of SIGIR-99,

22nd ACM International Conference on Research and Development in Information Retrieval, Berkeley, US.
pp. 42–49.

Lewis, D.D., and M. Ringuette (1994). A comparison of two learning algorithms for text categorization. In
Proceedings of SDAIR-94, 3rd Annual Symposium on Document Analysis and Information Retrieval, Las
Vegas. pp. 81–93.

Quinlan, J.R. (1993).C4-5: Programs for Machine Learning. Morgan Kaufmann, San Mateo, CA.
Raudys, S. (2001).Statistical and Neural Classifiers: an Integrated Approach to Design. Springer-Verlag, NY.
Raudys, S., and M. Skurichina (1992). The role of the number of training samples on weight initialization

of artificial neural net classifier. InNeuroinformatics and Neurocomputers. Proc. RNNS/IEEE Symposium.
Rostov-on-Don, Russia. pp. 343–353.

Rumelhart, D.E., and J.L. Mcclelland (1986).Parallel Distributed Processing 1. MIT Press, Cambridge, MA.
Sebastiani, F. (2002). Machine learningin automated text categorization.ACM Computing Surveys, 34(1), 1–47.
Sethi, I.K. (1991). Decision tree performance enhancement using an artificial neural network implementation.

In I.K. Sethi and A.K. Jain (Eds.),Artificial Neural Networks and Statistical Pattern Recognition: Old and
New Connections. Elsevier, Amsterdam. pp. 71–88.

Wiener, E.D., J.O. Pedersen and A.S. Weigend (1995). A neural network approach to topic spotting. InPro-
ceedings of SDAIR-95, 4th Annual Symposium on Document Analysis and Information Retrieval, Las Vegas.
pp. 317–332.

Text Categorization Using Neural Networks Initialized with Decision Trees 563

N. Remeikisis a doctoral student at Faculty of Informatics, Vytautas Magnus University.
His research interest include intelligent information retrieval, classification and hybrid
machine learning.

I. Skučas is a professor at Faculty of Informatics, Vytautas Magnus University. His re-
search interests include mathematical modeling of the systems and adapting for design.

V. Melninkait ė is a docent at Faculty of Informatics, Vytautas Magnus University. Her
research interests include data engineering and design of the systems.

564 N. Remeikis, I. Skučas, V. Melninkaitė

Tekstini ↪u dokument ↪u klasifikavimas naudojant neuroninius tinklus
inicializuotus sprendim ↪u medžiais

Nerijus REMEIKIS, Ignas SKǓCAS, Vida MELNINKAITĖ

Vystantis informaciṅems technologijoms vis didesn↪e reikšm↪e ↪igyja informacijos personaliza-
vimas, organizavimas, valdymas ir sprendim↪u priėmimas projektavime. Dokument↪u semantikos

↪ivertinimas yra suḋetingas ir daugiareikšmis procesas. Straipsnyje nagrinejama daugiasluoksnio
neuroninio tinklo, kurio architekt̄ura ir pradiniai svoriai nustatomi naudojant sprendimo medžio
klasifikatori ↪u, taikymas tekstini↪u dokument↪u klasifikavimo tikslumui padidinti. Diḋejant apmoky-
mui skirt ↪u duomen↪u kiekiui sprendim↪u medži↪u dydis auga tiesiškai. Todėl iš ši ↪u sprendim↪u medži↪u
sukonstruoti neuroniniai tinklai yra per daug dideli ir sudėtingi. Straipsnyje ši↪a problem↪a sīuloma
spr↪esti naudojant klaidos↪ivertinimu paremt↪a sprendim↪u medži↪u mažinim↪a. Tinkamas tikrumo fak-
toriaus parinkimas leidžia stabilizuoti sprendim↪u medžio dyd↪i didinant apmokymui skirt↪u duomen↪u
aib↪e. Pateikiami pasīulymai kaip tinkamai parinkti tikrumo faktori↪u sprendim↪u medži↪u mažini-
mui. Atlikto eksperimento rezultatai rodo, kad daugiasluoksnio neuroninio tinklo, inicializuoto
sprendim↪u medžio klasifikatoriumi, pagalba galima pasiekti didesn↪i klasifikavimo tikslum↪a su
standartiniu dokument↪u rinkiniu Reuters-21578, kuris naudojamas informacijos klasifikavimo už-
davini ↪u eksperiment↪u ↪ivertinimui. Gauti rezultatai palyginti su kit↪u autori↪u tyrim ↪u rezultatais, gau-
tais naudojant sprendim↪u medži↪u ir neuronini↪u tinkl ↪u klasifikatoriais. Numatomi tolimesni darbai
susij↪e su kit↪u kriterij ↪u informacijos semantikos↪ivertinimui tyrimu, bei pateikt↪u algoritm↪u modi-
fikavimu.

