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Abstract. The general concept of probabilistic argumentation systems PAS is restricted to the two
types of variables: assumptions, which model the uncertain part of the knowledge, and proposi-
tions, which model the rest of the information. Here, we introduce a third kind into PAS: so-called
decision variables. This new kind allows to describe the decisions a user can make to react on some
state of the system. Such a decision allows then possibly to reach a certain goal state of the sys-
tem. Further, we present an algorithm, which exploits the special structure of PAS with decision
variables.
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1. Introduction

The concept of probabilistic argumentation systems PAS has been used for dealing with
problems in different contexts and several examples from a wide spectrum have been
treated (Anriget al, 1999; Haenniet al, 2000; Kohlaset al, 2000). Lately, Anrig
& Kohlas (Anrig and Kohlas, 2002a) have considered the relation between reliability
(Kohlas, 1987; Beichelt, 1993) and model-based diagnostics (Anrig, 2000; Kettdhs
1998) on the basis of PAS. In this environment, the attention was brought to a small but
very interesting example (cf. Section 2). Although the theory of PAS was able to com-
pute the required result for this example, this was only possible after a quite sophisticated
modelization of the knowledge. Yet it turns out that there is a more elegant and natural
way.

Inspired from this example, we have extended the concept of PASIettision vari-
ables Consider the situation where we have modeled a system using &PAS$and the

“Some results related with this paper were published in (Anrig and Baz24i03a).
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elements of the set C P are the indicator variables of the components of the system. A
requirement describes the expected behaviour of the system, typically its desired input-
output relations. We are now interested in computing those system states which allow to
deduce the requirement Anrig & Kohlas (Anrig and Kohlas, 2002) have shown that
those system states are just the supporting scenaribsldiis is a well known problem

in PAS.

Now consider that given a system state, the users can themselves set the values of
some decision variables in order to guarantee the requirement. The interesting system
states are now those for which the users can find at least one settings of “their” variables
under which the requirement imposed on the system can be fulfilled. This can be seen
as a game with two players, say nature against a user. Nature makes the first move and
the user the second. If the requirement is fulfilled, the user wins (as the system is up),
otherwise not.

For computing results for this generalized version of PAS, the original methods of a
PAS can be applied followed by a post-processing. This is also addressed in (Anrig and
Baziukait, 2003a). Yet this proves to be inefficient and a new approach is proposed.

Section 2 presents an introductory example. In Section 3 the general theory of argu-
mentation systems is introduced; in Section 4, this is generalized to argumentation and
decision systems. Section 5 discusses then the computational theory and introduces a new
algorithm.

2. An Example: Energy Distribution System
ExamPLE 1. The function of an electrical power distribution system as depicted in Fig. 1
is to supply a high-tension liné3 from one of two incoming high-tension linefs?

and L2 over the busAd 7 (Frey and Reichert, 1973; Kohlas, 1987). The lihds L2, and
L3 are protected by corresponding high-tension switchiesS2, andS3. In case of a

Fig. 1. Example of an energy distribution system.
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broken switch it is possible to redirect the electric current on a second Bwshich is
protected by another high-tension switghi. The corresponding switchés?, 72, and
T3 can only be operated under no tension.
The energy distribution system is considered to be operatifg if linked toL1 or
L2 over at least twoprotecting high-tension switchesi (i = 1,...,4). The problem
is to determine the availability of an operating system. The lines are modeled by the
corresponding binary propositions with the same name, Bigmeans that the liné 1
is under tension, whereasl. 1 means that it is not. A switch can be closed (esg.) or
open (e.g..~S1) and furthermore it can be in its correct working mode (efjs;) or
faulty (e.g.,—okgs;). For the working modes we have probabilistic information available:

p(oksi) = 0.95, p(okp;) =0.97, p(oka;) = 0.99. (1)

The energy can pass through a switch only if the switch is closed. If a switch is not intact,
then it cannot be closed. So every switch can be modeled by the two logical formulas,
where the second formula has always the farswitch x is closed, then there is power

on both lines or points specified on the right-hand side or on none of:.them

—okg; — —S1, S1 — (L1 < P1),
—okpr; — =TI, T1 — (L1 < P5),
—0kgs — —52, S2 — (L2 < P3),
—okpy — —T2, T2 — (L2 < P7), (2)
—0kgs — —93, S3 — (P2 < L3),
—okrs — —T3, Tf)’ — (P6 < L3),
—okg; — 54, — (P4 < P8).

The different connection points to the buses are modeled by the propogitiaiasPs; if
the bus is working correctly, then either there is power on all of the respective connection
points or on none of them:

oka; — ((Pz A P2 A P3N PJ)V (~P1 A-P2 A —~P3 A ﬁP4)) 3)

okas — ((P5 A P6 A PT A P8)V (—P5 A—P6 A—|P7/\ﬂP8)> @)
An important part of the model is the fact that only oneldf, 72 and T3 is allowed to
be closed at the same time, because otherwise there is no protection between the corre-
sponding lines:

~(TI AT2), —(TIAT3), —(T2AT3). (5)

Until now, we have specified different things:
e propositions whose values are set by nature:

A = {0ks;,0ks2,0kss,0ks;,0kry,0krs,0krs,0ka;,0kaz}, (6)
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e propositions whose values are (or may be) set by the user (under some restric-
tions):

D ={81,52,53,54,T1, T2, T3}, @)

e other propositionst/ = {P1,..., P8},
e knowledge about the system in form of logical sentences.
Consider now the requirement that given power at the input linesand L2 the
line L3 is really supplied. We will formulate this by the logical formula= L1 A L2 —
L3.
There are two main problems: the first one is to compute a (logical) description of
those system states, where the user can react so that the requifeésfetftiled. Second,
for every system state we want to have a description of possible decisions of the user (so
that the requirement is fulfilled). In the rest of this paper we will discuss solutions to
both problems.
Clearly, in reliability theory this very example has been treated successfully: this
means that for example in (Kohlas, 1987), the path sets have been detebyhreattiand
only then based on this information, the reliability function has been computed. Here, we
will show how the structure function can be derived directly from the logical description
of the system.

3. Argumentation Systems

Probabilistic assumption-based argumentation systems have been developed as general
formalisms for expressing uncertain and partial knowledge and information in artificial
intelligence. They combine in an original way logic and probability. Logic is used to
derive arguments and probability serves to compute the reliability of these arguments.
These systems can be used for example for model-based diagnostics as has been shown
in (Anrig, 2000; Kohlaet al., 1998).

Argumentation systems can be based on different logics. For the sake of simplic-
ity we limit ourselves here to the case of propositional logic. In this section we give a
short introduction into propositional probabilistic argumentation systems (Hatahj
2000; Kohlaset al,, 1998; Anriget al,, 1999). Note that such systems have been imple-
mented in a system called ABEL, Assumption-Based Evidential Language (&inaig
1999), which is available on the interndtt( p: // di uf . uni fr.ch/tcs/ abel),
and which can be used to compute results of the examples of this paper as well as of
other problems.

3.1. Basic Definitions
Propositional logic deals with declarative statements that can either be true or false. Such

statements are callggopositions Let P = {p4, ..., p,} be afinite set of propositions.
The symbolsp; € P together withT (tautology) andL (falsity), are callecatomsor
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atomic formulas Compound formulas are built by usual syntactic rules (using the con-
nectors—, A, V, —, and«).

The setl p of all formulas is calleghropositional languagever P. A formulay € Lp
is also called aropositional sentenceA literal is either an atonp; or the negation of
an atom—p;. A termis a conjunction of literals, and@auseis a disjunction of literals.
Usually we will consider onlyproperterms and clauses, where every atom occurs at most
once in a term or a clause, either positive of negative, and neithesr | does occur.
Additionally, we say thafT is a (empty) proper term and a (empty) proper clause.
The set of all proper terms is denoted @y C Lp, and the set of all proper clauses by
Dp g [,p.

A clause (and similarly a term) is interpreted also as a set of its literals; this allows
to simplify the notations and algorithms. So for example for teims’ € £p, we have
a C o ifandonlyifa’ = a A 3 for somes € Lp. As aspecial case, C o C T
for every clausex and L O g O T for every termg. If we want to emphasize the
interpretation as a set, we writg(3). Note thatit(—3) for a termg is the set of literals
of the clause-S. For a set of formula we define-X = {-(: ( € X}.

Np = {0,1}™ denotes the set of all” different interpretations relative t& The
set of all models ofy is denoted byNp(v) C Np. A propositional sentence entails
another sentencg(denoted byy = 6) if and only if Np(v) C Np(d). Sometimes, it is
convenient to writex |= v instead ofx € Np(v). Furthermore, two sentencesandd
arelogically equivaleni{denoted byy = §), if and only if Np(y) = Np ().

3.2. Propositional Argumentation Systems

Consider a finite seP = {p1, ps,...,pm  Of propositions. We consider a fixed set of
formulasX C Lp called theknowledge basevhich models the information available;
sets of formulas are interpreted conjunctively, i+ A{¢ € X}. We assume that this

knowledge base is satisfiable.

DEFINITION 1. A propositional argumentation system PASis a tuple(P, X) where
P is a set of literals andl. C Lp a set of formulas.

Note that in the present formulation (and opposed to previous work on PAS, e.g.,
(Haenniet al, 2000; Anriget al., 1999)), we do not explicitly single out the assumptions,
but allow them to vary from one situation to another (cf. below). This does not contradict
the initial idea about argumentation system. Often, it is clear from the beginning which
propositions are assumptions and which ones are not. Yet from the users perspective it is
interesting to switch the type of variables from assumptions to propositions or vice versa
in the development of a model. Further we will see in Section 4 that this can also be
interesting for answering even more general questions.

DEFINITION 2. Consider a PASP,¥) and a subset odssumptions A C P. For a
hypothesig: € £p we define
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Inconsistent Scenarios:. CS4Y) ={se€ Ny:s, X = 1}
Quasi-Support Set: QS5 (h,X)={s€ Ny :8,X | h}
Support Set: SP5(h,X) =QS5%(h, %) —QS5(L, %)
Plausible Set: PL%(h,X) = Ng — QS5 (—h, %)

The elements ofV4 are calledscenariosor system statesnconsistent scenarios are
in contradiction with the knowledge base and therefore to be considered as excluded by
the knowledgeC'S% is also called conflict set. Supporting scenarios for a formusae
scenarios, which, together with the knowledge base imypynd are consistent with the
knowledge. So, under a supporting scenario, the hypothesisrue. Possible scenarios
for h are scenarios, which do not impty and thereby do not refufe Quasi-supporting
scenarios are important especially for technical reasons.

3.3. Logical Representation

Scenarios are the basic concepts of assumption-based reasoning. However, sets of in-
consistent, quasi-supporting, supporting and possible scenarios may become very large.
Therefore, more economical, logical representations of these sets are needed. For this
purpose, the following concepts are defined:

DEFINITION 3. Consider a PASP,Y), a set of assumptiond C P and a hypothesis
h € Lp, then we call:

Conflicts: a € Cy such thatV, (a) C CS5(Y)

Quasi-Supporting Argument for h:  a € C4 such thatV4 (o) C QS (h, X)
Supporting Argument for h: a € CysuchthatVy (o) € SP;(h,X)
Possible Argument for h: a € Cy suchthatVy(a) € PL5 A, Y)

We defineQS4(h,X), SPa(h,X), andPL4(h,X) = SP5(—h,X) to be the sets
of quasi-supporting, supporting and possible arguments faespectivelyQS(L, )
denotes then the set of conflicts. These sets are all upward closed,®.g.5P4 (h, X)
then everyn’ D avis also inSP4(h, X).

A conjunctiona is a minimal element of a set of conjunctions if for every conjunction
o’ of this set satisfyingr’ C o we haver = o’. The sets of arguments defined above are
already determined by theininimal elements. In general for an upward closed$eff
conjunctions (or clauses),S denotes the set of minimal elements%Hf

3.4. Probabilistic Argumentation Systems

On top of the structure of a propositional argumentation systems, we may easily add a
probability structure. We assume that there is a probability) = p; for every assump-

tion a; € A given. Assuming stochastic independence between assumptions, a scenario
s = (s1,...,8,) gets the probability

= [[»i—pi)'—. 8
=1
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This induces a probability measysen the languag€ 4, p(f) = > {p(s) : s € Na(f)}
for f € L4. Atuple (3, A, P,II) with II = (pu,...,p,) is then called grobabilistic
(propositional) argumentation system PAS

More generally, any probability measupeon £ 4 (or more rigorously onV,4) can
be used. The local structure described above is just a very convenient but also frequent
special case, yet there are other local structures which can be used.

Once we have such a probability structure on top of a propositional argumentation
system, we can exploit it to compute likelihoods (or in fact, reliabilities) of supporting
and possible arguments for hypothesegirst, we note, that the knowledge basém-
poses that we eliminate the inconsistent scenarios and condition the probability on the
consistent ones. In other words,is an event that restricts the possible scenarios to the
setN4 — CS%(X2), hence their probability has to be conditioned on the e¥erithis
conditional probability is defined by

p(s)
1- p(QSA(J—v E)) .

P (s) =

for consistent scenarias p(QSa(h,X)) = dgsa(h) is the so-called degree of quasi-
support forh. The degree of suppotisp 4 for hypotheses is defined by

/ dgsa(h, %) — dgsa(L,
dspa(h) = o (uSPa(h ) = AR E) = )

This result explains the technical importance of quasi-support. It is sufficient to com-
pute degrees of quasi-supports. Further, we obtain the degree of plausibility.ef
dpsa(h) = 1 — dspa(—h). For some information about computing these probabilities
see Section 5.3.

Note that the degree of quasi-suppéyt 4 (k) of h corresponds in fact to unnormal-
ized belief, the degree of support to normalized belief in the Dempster—Shafer theory of
evidence (Shafer, 1976; Kohlas and Monney, 1995; Haeinaili, 2000).

4. Argumentation and Decision Systems

The concept of a PAS allows that the user can compute symbolical and numerical argu-
ments for and against any hypotheses he likes, but it does not allow to include actions
of the user. The introductory Example 1 is a typical situation where in some cases addi-

tional user interaction allows to fulfill a specified requirement. Hence we will incorporate

a limited range of user actions (or better: possible user actions) into our system. In the

sequel, we will especially look at the situation when the user makescdion with re-

spect to some previous action of “nature”, in the sense that given some components are
functioning, he selects which ones of these components should do the job.
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4.1. Propositional Argumentation and Decision Systems

Consider a PASP, ¥) and a set of assumptions C P. A subset of variable® C P

is singled out. This seb contains all those variables which can be set by the user. The
idea is that given the knowledge basgthe variables specified by are set without any
possible intervention of the user, i.e., these are the variables set by nature or an enemy.
The user cannotinfluence them. Yet after these variables are set, the user can set the values
of the variables specified b§ and try to deduce there with some hypothdsis Lp.

More precisely: given the setting of the variables4nis there always a possibility for

the user to select a setting of the variabledirso that together with the knowledge

these settings are not contradictory and imply the hypothésis

DEFINITION 4. A propositional argumentation and decision system
PADS is a tuple(P, D, %) with D C P, andX C Lp. A scenariod € Np is called
auser decision.

We assume that the propositions/incan directly be influenced by the user, whereas
the other propositions cannot. Especially the assumptions, i.e., a specifiedset— D,
cannot be influenced by the user but only by nature. Here we will consider the situation
whereA N D = 0, i.e., there are no propositions which can be influenced directly by
nature as well as by the user.

Formalizing the ideas from above, we are now interested in the following scenarios
given a hypothesia € Lp and a set of assumptiodsC P — D:

{s€ Ny: Thereisad € Np s.t.s,d, X = hands,d, X [~ 1} (9)

In the special case when there are no decidable variables,, the problem above is
just the problem of computing the supp6tP; (h, ) of the hypothesié (considered as
an ordinary hypothesis). Therefore we re-use the same notation for the set (9):

DEFINITION 5. Theset of supporting scenarios SP5(h, X; D) of a hypothesig with
respect to the decision variables/inis defined as

SP5(h,%; D) (10)
={se€ N4: Thereisad € Np s.t.s,d,X = hands,d, X |~ L1}

For every supporting scenario, i.e., for every setting of the variablelséhosen by
nature, the users can find at least one setting of their variabl€k ire., those which
can be changed by them, so that the knowledge based together with these settings al-
low to deduce the hypothesis but at the same time are not contradictory. Clearly,
SP5(h,%;0) = SP;(h,X).

ExaMPLE 2. The information modeled in Example 1 is already in the form of a PADS,
namely we have defined the assumptighgésee (6)) and the decision variablBs(see
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(7)). There are some further variabl&s = {P1,..., P8}. The knowledge about the
system has been modeled using several logical formulas in Equations (2) to (5), which
together specifyE.
These ingredients form the PAO®, D, X)) with P = D UU U A.
For the hypothesis = L1 A L2 — L3 the following supporting scenarios can be
computed:
(1,5, 1y o,y ok, 1osk), (o, 1y 1), sk, o, 1) %)),
SPA(6,3;D) = < (L,k,%, 1,%,%,1,1,1), (%, 1%, 1,%,%,1,1,1), (11)
(e, 1,1, 1, %, 1,10, (o, 1, 10, 1%, 1, 1)

) 9 ? ) ) ) ) )

Here, the assumptions are ordered as in (6) and a stasignifies that either & or

a1 can be inserted in the place. This gives finally a total of 170 supporting scenarios.
For example, the scenario= (1,0,1,0,0,0,0,1,0) € SP5(d,%; D) states that only

the switchesS7 and S$ are working correctly together with the bdg and indeed this
scenario allows the user to take a specific action (namely close the switches which work
correctly) so that the requirement is fulfilled.

Lemmal. SP5(h,%;D) is monotone inD, i.e., for everyD’ C D we have
SP4(h,%; D) C SP4(h,%; D)2

Several results from support functions (cf. Theorem 2.2 in (Haenhai., 2000)) can
be restated for the present case. However, note the set inclusion instead of equality in
point (3) below.

Lemma2. If hy, hy are sentences id p then

(1) SP;(L,%;D)=10.

(2) SP5(T,%; D) =CS5(D).

(3) SP5(hy A hg,%; D) C SP5(hy,%; D) N SP5(hg, 35 D).
(4) SP5(hyV hy, ;D) D SP5(hy,%; D) U SP5(hy, ¥; D).
(5) h1 = ho impliesSP5(h1,%; D) C SP5(he, X; D).

4.2. Decisions Depending on System States

The second question which has been raised in the introductory example was: given a
system state which decision can be taken by the user? Given a PADS, this can be answered
using the following concept:

DEFINITION 6. Theset of supporting decisions SD% (h, ¥; D) of a hypothesig: with
respect to the decision variables/inis defined as

SD%(h,2; D) = {(s,d) € Ns x Np :5,d,% = hands,d, S & 1}

2For proofs of all lemmas see (Anrig and Baziuka2003).
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A supporting decisioris,d) € SD?%(h,X; D) specifies first a system stateand a
corresponding decisiath which can be taken by the user in order to fulfill the hypothesis
h. For a system state, there may be several possible decision, hence this is not an optimal
representation.

4.3. Logical Representation
Analog to the case of ordinary PAS, we define the notion of argument for a PADS.

DEFINITION 7. Consider a PADSP, D, Y.), a set of assumptiond C P — D and a
hypothesish € Lp, then we calle € C4 a supporting argument for A if and only

if Na(a) € SP5(h,%; D). The set of supporting arguments for h is denoted by
SP4(h,X; D). As in the case of PAS, sets of supporting arguments are upward closed.
HencewnSP,(h, 2; D) denotes the corresponding set of minimal arguments.

DEFINITION 8. Similarly, we calle € C4up asupporting decision (argument) for h
if and only if Nayp () € SD%(h,3; D). Theset of supporting decision (arguments)
for h is denoted byS D 4 (h, ¥; D); this set is upward closed. Henpg& D 4 (h, 3; D) is
the corresponding set of minimal ones.

ExAmMPLE 3. A logical version of the supporting arguments is more readable:

oka; Nokgy N okgs,
oka; Nokgs N okgs,
okas Nokas N okgy /\0]654 A ok g,
okas N\ okas Nokga N 0]654 A ok g,
okas N\ okas N okgs /\Ok,g4 A okry,
okas Nokas Nokss N 0k,94 A ok g

uSPa(h, ;D) = (12)

These six formulas represent indeed the result expected from reliability theory, i.e., they
determine the structure function of the example. The formulas corresponds to the six
minimal paths given in (Kohlas, 1987).

4.4. Probabilistic Argumentation and Decision Systems

So far we have only been concerned with symbolical results. However, given the numeri-
cal information we can weigh the arguments and compute — for example — the reliability.
Along similar lines as in the case of PAS (cf. Section 3.4), we introduce probabilities into

the framework of PADS. Using the same notation, we define the degree of sdppgrt

for hypothese# by

p(uSPa(h,%; D))

dspa(h, 3 D) = p'(uSPa(h, 25 D)) = 1= im o -

(13)
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In the case of PAS, such a probability can be computed directly using the concept of
Dempster—Shafer belief functions (Haenni and Lehmann, 2003; Haenni and Lehmann,
2001) with local computations (cf. Section 5.3). Itis not yet clear if and how this approach
can be extended to PADS.

5. Computation

Consider a PADS$P, D, ¥) and a set of assumptiodsC P — D. In this section we focus
on the problem of computing the set of minimal arguments for a hypothesig p.

5.1. Arguments

Clearly, the computation of a compact representation of the supporting scenarios and the
supporting decisions is a key point. We re-use here the well-developed concepts from
PAS. First, we have to introduce the concept of projection w.r.t. conjunctions. Consider a
conjunctiona € Cp. The projectionv!”” of « to the subseP’ C P means to eliminate
all literals outsideP’ from the conjunction. The projection of a set of formulas Cp
to P’ is computed using the projection of every elemeéit, = {a!” : a € §}.3

For a discussion of the computation of minimal arguments in PAS see Section 5.3 and
(Haenniet al,, 2000; Kohlaset al., 1999). For the computation of arguments in a PADS,
we can use the technigues of computing arguments in PAS by changing temporarily the
type of some variables:

Lemma3. Na(SPa(h,%; D)) = Na((SPaup(h,£))'4).

The lemma above is stated on the level of scenarios. If we try to lift it up to the level
of arguments, we can only prove the following result:

Lemmad4. SPa(h,%; D) D (SPaup(h, X)),

This means that the corresponding PAS allows to compute only a subset of the sup-
porting arguments for the PADS, yet the “missing ones” are included in larger arguments:

COROLLARY 1. Foreveryn € SPa(h,%; D) there is a’ € (SPaup(h, X)) so that
a A fB=cd forsomes e Cy4.

Hence from PAS, essentially a correct logical representation of the support in PADS
can be computed; however, some arguments might be missing. The same situation arises
in the computation of arguments in PAS, and the use of the opeZattg, for computing
all arguments is discussed in (Haemtial, 2000). These results can be applied to our
situation.

SNote that this operation denotes the projection; this is different from variable elimination (Hzteaini
2000) also known as variable forgetting!
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DEFINITION 9. The operatotons,4 is defined on a set of conjunctiods as follows,
with A = {a1,...,a,}:

Consa(C) = =(Consy, (Consa, (- -+ (Cons,, (=C)) -+ ))) (14)

andCons, is the set of all resolvents with respect to the assumptjé®., Cons,(Z) =
EU{p( &) : & ¢ € E} for a set of clauseS andp as in (Haennét al, 2000).

Note that the definition is unambiguous since the order of the assumpti®osg,, in
(14) does not matter (Haenei al, 2000). The order however is crucial for the efficiency
of computations (see also Section 5.3).

Lemma5. SPa(h,%;D) = Consa(SPaup(h,¥))**) and therefore we have also
wSPa(h,¥; D) = uConsa((11SPaup(h, X))H4).

Note that the negation applied to a set of conjunctions means to apply the negation
to every conjunction in the set, which results in a set of clauses, and vice versa. The
set of supporting argumentsS P4 p (h, X) can be computed fromQ S aup(h, X)) and
1QSaup(L,Y) (Haenniet al, 2000) as follows:

Algorithm Algol
Input: QS aup(h, D), pQSaup(L, %)
Output: wSPaup(h, %)

let R = ()

for everya € uQSaup(6,%)
transforma A A\ ~uQSaup (L, X) into a DNF
add the conjunctions t&

returnuCons 4 (uR)

The supporting decision arguments can be computed similarly using the following
results:

Lemma 6. SDA(h, > D) = SPAUD(h, E), MSDA(]’L, > D) = /.LSPAUD(h, 2)
5.2. Improvements in the Computation

The computations described in the previous chapter are correct, yet in applications, one
becomes aware that some of them require a lot of time. Where is the problem? The
computation of a typical supportSPa(h,X; D) as defined above requires according

to Lemma 5 essentially that we determin8P,p(h,X). This is done by computing

the two minimal sets of arguments)Saup(h, ¥) andu@Saup (L, X), which both can

be computed usually in short time. The computationally hard part is then the combination
of them according to the algorithilgol There, especially the conversion of a negated
DNF into a DNF is time consuming, i.e., a translation from a CNF to a DNF. This is a
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problem whose complexity is known to be non-polynomial (without the introduction of
additional literals). This problem arose very clearly computing the example of energy dis-
tribution system with more redundancy (Frey and Reichert, 1973; Anrig and Ba&ukait
2003).

Here, we are in the situation where we are not interested in the supporting arguments
uSPaup(h,X) but only inuSP4(h,%; D). Hence we essentially have to combine the
computation ofuS P4y p (h, ¥) with the subsequent projection to The following algo-
rithm exploits the special situation:

Algorithm Algo2
Input: pQSaup (6, %), pQSaup(L,X)
Output:  pSPa(6,%;D)

let R = ()
for everya € uQSaup (9, %)
B € pQSaup(L,%),
let=, = { BHvar@)” . yar(B) C AUvar(a)
lit(B) N lit(—a) = ()
transforma A A\ =2, intoaDNF§ = §; V -+ V §
and add}* to R for everyi = 1,.. ., ()

returnuCons 4 (uR)

q(a)

Remember that for a conjunction= a4 A- - - Ay, the set of literaldit(—«) consists
of the literals contained in the clausey; V - - - V —ay.

Lemma7. The result of the algorithm is equal o5 P4 (0, 2, D).

ExAMPLE 4. Consider the set of assumptioAs= {a1, a2, a3} and the decision vari-
ablesD = {d;, d>}. Assume that we have computed

pQSAup(0,%) = {a1 Ady, da, as}
,U,QSAUD(J_,Z) = {CL3 Nda, —di A ag, a1 A —ag A dl}

and we have to compute the set of supporting argumesif3, (6, 2; D).

We use the algorithmlgo2 First, we setkR = 0. Consider the first element A d;.
According to the algorithm, we have to look for elementg@Saup (L, X) which re-
spect the two conditions of the definition &f,. The first argumentgs A do does not
respect the first condition becauser(as A d2) = {as,d2} € AUwar(a; Ady) =
{a1,a2,as3,d1}. Hence this argument can be omitted. The second eiwg, A as,
does not respect the second condition becdige:d; A az) N lit(—(a1 A dy)) =
{=di,a2} N {—ay,~d1} = {—~d1} # 0 and can therefore be omitted too. The third
one,a; A —as A di, does respect both conditions, hence we have to project it to
(var(a1Ady))® = {az,as,ds}, i.e.,(a; A—ag Ady ) 29342} = g, Then, the resulting
formulaa; Ad; A—(az) has to be transformed into a DNF (which it already is in this case)
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and its projection tod is added taR, henceR = {a; A —as}. The same procedure is now
done with the second elemety of nQSaup (4, X). This yieldsR = {a; A —aa, —as}

and, using the third element, we getR = {a; A —a2, —as, as}. Finally, we have

to apply the minimality operatar which yieldsuR = {—as3, a2} and then apply the
operatorCons 4 to R which, in this special case, does not change anything, hence the
resultisuSP4(6,%) = {—as, as}.

5.3. Local Computations and Approximation Techniques

For the computation of supporting arguments, we can re-use techniques from PAS
(Haenniet al,, 2000) based on the concept of variable elimination. One of the main prob-
lems of variable elimination (Haenet al, 2000) is the order in which these variables

are actually eliminated (the results are equivalent for all orderings, but the computation
time depends very much on the ordering). An ordering corresponds to a computation on a
certain hypertree structure, a local computation technique based on ideas from Lauritzen
& Shenoy (Lauritzen and Shenoy, 1995) which allows to distribute the computations on
different virtual or real processors (Shenoy and Kohlas, 2000; Kohlas, 2003). We refer
also to (Anrig and Kohlas, 2002a) for applications of these computation techniques to
reliability and diagnostic.

Based on these symbolical results, the numerical results can then be computed
using orthogonalization techniques in reliability theory (Abraham, 1979; Heidtmann,
1989; Heidtmann, 1997; Bertschy and Monney, 1996; Anrig and Beichelt, 2001). Be-
sides, new promising approches focus on more general decomposition techniques (Dar-
wiche and Marquis, 2001; Darwiche, 2002). If we are only interested in numerical results,
then there is a second, often more efficient way, cf. Section 4.4.

When applying the framework of argumentation systems to larger problems, there is
need for approximation techniques (Haenni, 2001; Haenni, 2001a); yet its application to
PADS is subject to further research.

6. Conclusion

We have shown how the well-known formalism of PAS can be enriched with decision
variables. A specialized algorithm for computing the respective arguments has been pre-
sented. This allows now to use this framework for example in model-based reliability
theory (Anrig and Kohlas, 2002; Anrig and Kohlas, 2002a) for computing structure func-
tions.

Several open questions arose during the research. First, the numerical counterpart of
PAS is — in some sense — the computation with belief functions (Haenni and Lehmann,
2003; Haenni and Lehmann, 2001). But is it possible to apply the same concepts for
PADS? Second, several approximation techniques are known for PAS and also for belief
functions. Is it possible to use the same techniques for PADS? Using these approximation
technique we would get then (symbolical) upper and lower bounds of structure functions
in reliability theory.
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Tikimybinés argumentavimo sistemos su sprendimo priemimo
kintamaisiais
Bernhard ANRIG, Dalia BAZIUKAITE

Tikimybiniy argumentavimo sisteynsavoka yra apribota dvigjtipu kintamaisiais: prielaidomis,
kuriomis modeliuojama neapigttoji ziniy dalis, ir teiginiais, modeliuojdiiais likusa informa-

cijos dal. Atskiri tikimybiniu argumentavimo sistamtaikymo atvejai sutinkamiyvairiose prob-
leminese srityse, sprendziant skirtingos prigimties uzdavinius. Siame darbe skaitytojas supazindi-
namas su ti&o tipo kintamaisiais, kuriuos vadiname sprendiméprimo kintamaisiais. Sis naujas
kintamuju tipas leidzia iSreiksti vartotojo sprendimus, kuriuos Sis gali priimti reaguodataas

tikra sistemos bsera. Straipsnyje pristatomas argumersiu sprendimo pgimimo kintamaisiais
apskatiavimo algoritmas.



