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Abstract. It is well known that many practical optimization problems 
w1'th iindolll elements lead frbm the niathematiC3.1. point of view' to 'det~rminrsti~ 
optimization' problems depending an 'theraridilritelements thioughpro'b:. bili~y 
laws only. Further, it is also wen known that these probability laws ate knQwI1> 
very seldom. Consequently, statistical estimates of the unknown . probability 
measure, if they exist, must be employed to obtain some estimates of the optimal 
value .a.ndthe optimal solution, a.t least. 

If the theoretical distribution function is completely unknown then an em­
pipcal distribution usually substitutes it [2, 3,9, 17,31]. The great attentioJ). 
has been al~eady paid to the studYing of statistical properties of such. arised 
empirical estima.tes, in the: literature. We can remember here the works [4, 5, 6, 

10', 13, 16, 32], for example. The aim ofthis pape~ is to discuss the convergence 
rate. For this we shall employed the~ertions of the papers [10, 11, 13]. ' 

Key words: stochastic programming, problem with penalty, deterministic 
equivalent, random sequence fulfilling ~mixing condition. 

l.Introdu~tion. Let (O,S,p) be probability space, e = few) = 
[el(W, ... ,e6(W)] be an s-dimension~t random vector defined on 
(0. S, P), F(~) be the distribution function of, the random vector 
e(w), Z C E. denote tne support of the probability measure corr~­
spondiJ:lg tothe distributioll ftlllction F(z), 9i(Z,z),i = 0,1,2, ... ,l 
be real valued continuous fUrl,ctions defined on En X E., X C En 
be a nonemptyset (En, n ~ 1 denotes an n-dimensional Euclid~an 
space ). 
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The general optimization problem with random element can 
, be introduced as the problem to find . 

min{go(z,e(w»IZEX: gi(Z,~(W»~O, i=1,2, ... ,t}. (1) 

It happens rather oftenthat the solution Z must be found with­
out the realiza.tion knowledge of the random vec'tor e(w). Evidently, 
it is necessary, first to determine the decision rule, in such situa­
tion. It means to set to the original stochastic optimization prob­
lem (1) some deterministic equivalent. Two well known types of 
the deterministic equivalents can be introduced as the following 
deterministic problems. 

I. To find 
inf{Eg(z,e(w» I z EX}. 

Stochastic programming problems with penalty and two-stage stD­

ch~tic programming problems belong to this class of optimization 
problems. 

n. To find 

inf{Eg(z,e(w») I~EX:,P{w: gi(Z,e(W»)~O, i=1,2, ... ,l})er}. , . 
j . 

This determinis1iic equivalent is known as the chance constrained 
sto,chastic progr~mming problem, from the literature. 

er E (0,1) is a parameter, g(z, z), g(z, z) some real valued con­
tinuous functions defined on En X E., E denotes the operator of the 
mathematical expectation. 
REMARKS: 

1. 1'he choice of the functions g(., .), g(.,.) depends on the char­
acter of the original stochastic problem. 

2. It can generally happen that some above mentioned symbols 
are not meaningful. However, this situation cannot appear 
under the assumptions considered in this paper. 

3. It is easy to see that I is a special case of n, from the math­
ematical pointO of vi~w. We consider' these problems sep­
arately, according to the historical development and . their 
specific properties. 
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If we define the sets Z(z), X(~), ~ EEl, Z E En by the pre­
scriptiQn 

{ 
{z EX: P[Z(z)] ~ Q} for ~ E (O,l), . " 

X(Q) :::: X(I) for ~ > 1, '(2) 
, X(O) for ~ < 0, 

Z(z)::::{zEEs: g.(z,z) <:0, i=I,2":,,l}, 

then we can rewrite the d~terministic equivalent II in the form: to 
find ' 

in! Eg(z,e(w»). (3) 
X(a) 

If, further, eA:(w) = eA: = .[et(w), ... ,e:(w») is a sequence of 
random vectors with the common distribution function F(z), the 
functions Ui(:,W) = Ui(Z), FN(Z,W) = FN(Z), Z.= (Zl,""Z.) E E., 
wE 0, k = 1,2, ... , N, N:::: 1,2, ... are defined by 

,UA:(z,w) = 1 <:::=::> e;(w) < Zj for all j = 1,2, ... ,s, 
= 0 <:::=::> ej(w) ~ Zj for at least one j E {I, 2, ... , s}, 

1 N 
FN(Z,W):::: (N) 2: U1:(Z,w). 

1:=1 

EN and PN, N = 1,2, ... denote the operator of mathematical 
expectation and probability measure corresponding to the distri­
bution function FN(-), the set mapping XN(Q) = XN(Q,W), N = 
1,2,.;., Q.E (0,1), wE 0 is defined by the prescription 

then under general conditions inf::ex ENg(Z,e(w») estimates the va­
hie inf::ex Eg(z,e(w») in the case of the deterministic equivalent L 
In the case of the deterministic equivalent II the theoretical value 
infX(a) Eg(z,e(w») can be estima.ted by the value infxN(a) ENg(z, 
e(w»). 

The statistical behaviour of lone just introduced estimates has 
been studied in the literature many times. We can remember here 
the works [2, 3, 6, 9, 12, 32], where the conditions are given under 
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Convergence rate" ',' 

wl&h these estimates are consistent. Fut'th~r~ the rate convergence 
was studied in [10, 11,22,29,30]. In detail, mostly the upper bound 
for the expres~;ions " , 

p{w: \infENu(:z:,eCw)) -infEg(:z:,eCw))t' >"l}, , X x" ., 

p{'w:' I inf EN9(Z,e(w») - inf Eg'(:z:,e(w)yl > t}, 
XN(a) X(a) 

t > 0, were 'presented there. 
Further, the asymptotic distributions of the 

VN(iN(W)-i) was studied'in[4, 5,16,17,32], 
random ,,&:lue 

i= arg~IlE;u(~,eC~»), ", .. ~. . '(4) , 

'i.v(w) =iN ~8.rginhiENg(Z,e(w»). ' 
'C, ,,x i ,... ... 

In this paper we shall try to present some tighter results Jor 
the convergence rate. In detail, we shall determine (3 > 0 such that 

p{ w : N~I ijf ENU(Z:e(w») ~ ijf Eg(:z:,e(w» I >t} -(N-oo)0, (5) 

p{w : N~I oinf, EN9(Z,eCw» 
I XN,a) 

- inf Eg(z,e(w»)I > t} -(N-oo) 0 (6) 
1'(0) 

for every t > 0. I " '. • 

Further, if 9hz), g(, z)are uniformly strongly convex with 
parameter p >0 functions of :z: E X ,( f.or the definition of strongly 
convex functions see Definition 3), then we have also {3 > 0 such 
that 

(1) 

and 
p{w; NPII:Z:N(O',w) ~ z(O')1\2> t} -~!"_~) 0, , (8) 

iN(W), i fulfil the ,relation (4) and zN(O"w) = zN,(O'), z(O')ar~ defined 
by 

ZN(O',w) = zN(O') :::a.rg minENg(a:,e(w)), .(9) 
, XN(a) . 

z(O') = arg~.!} Eg(z,e(w»., 
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, We shall employ the works [lO, 11, 13] to obtain the above men­
tioned results. Consequently, some types of stochastic dependent 
random samples will be included into our investigation. However, 
we restrict our consideration to the case when 

i= 1,2, ... ,£, 

in the 'ease of the deterministic equivalent 11. fi(~)' i = 1,2, ... ,f. are 
some real valued continuous functions defined on En. 

Evidently, it bolds l=s in the case .. ', 

2. Some auxiliary definitions. In this part we shall remem­
ber some definitions. The Haus,dorff distance between. two subsets 
in En is defined by the following way: 

DEFINITION L If X', X" C En, n ~ 1 are two' non-empty sets 
then the Hausdorlf distance oftbese sets is defined by 

~n[X',X'1 = max [cn(X',X"),6n(X",X')], 

bn [X1 ,X'1 = sup inf Ilx' - ~"II. 
z/EX' z"EX" 

11·11 denotes the Euclidean norm in En. 
(We usually omit the subscripts in. the symbols ~n, 6n .) 

Let {7hw )}f:-oo be an s-dimensional strongly stationary ran­
dom sequence defined on (0, S, P), B( -00, a) be the C1-algebra given 
by ... , 71cJ - 1(W), 71cJ (w) , B(b,+oo) be the C1-algebra given by rl(w) , 
'16+1 (w), .. : (a, b are integers). 

If }/ denotes the set of all natural numbers, 4>0 is a non­
negative real valued function defined on N then we can define the 
4>-mixing random sequence by the following definition from [1] .. 

DEFINITION. 2. We say tbat tbe strongly stationary random 
sequence {'1"(wnr=_oo fulfils the condition of 4>-mixing if 

I 

for -,it e B(-oo,m), A2 e B(m+ N,+oo), -00 < m <+00, N) 1, m 
is an integral number. 
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Further, we shall re~ember one definition of convex 'analysis; 
, ,. " 

DEFINITION 3, Let h(z) be a real valued functjon defined on" 
a convex set }C C En. h(z) isa strongly~ c£?nvex £..unction with the 
parameter p > 0 if 

I •• " ,r.,f ;" t 

- ,- -, "2 
h()..Zl + (1- >')Z2) ~ )"h(Zl) + (1- )")h(Z2) -)...{J - )..)pll~l -,z211 

for every Zl, Z2 E}C, ).. E (0, 1). 

, ,REMARK. Thea:ssumptions under whi~h a function is a s'irongly 
convex one with a parameter p > 0 ar~ 'introduced in [20]~' for ex-
ample. ',' • , ' 

'It is known that the class of logarithmic concave probability 
measures is very important for change constrained stochas~ic pro­
gramming problems [8, 18, 19].' If B6 denotes the Borel u-algebra of 
the subsets of E, then we can already remember the corresponding 
definition [18]. 

DEFINITION 4. A probability measure PO defined on the B, is 
logarithmic concave if for every ,A, B E B, a~d for every).. E (0,1) 
the following ineqjlality, 

I 

PP.A + (1 - )")B] ~ [P(AW'[P(B)]l-~ . ' . 
;.l 

holds. (AA, + (1 - ,)")B means Minkowski,:additiqp of sets.) 
If D C En is' a . b()undedset then there e"ist dj, d'/' E El, j = 

1,2, ... ,n and natural numbers mj =,mj(D,d), j =1,2,;::.,n for 
d> 0, dE El, d < minjCdj' - dj) such th~t ,,' 

dj(D) = dj= inf{zj :.~ = (Zl~';" ,zn)E .D}, (10) 

dj(D) = dJ= sup{Zj: Z = (Zl,"·' zr).E D}, " 

D Vn 'D'Vn D d" 'd' jT ~ mj <, }iT+ 1, '; =',j - ;. 

Further, we can define Zj1l" ., Zj!TI;'.i ;;: 1,2, ... : n such that 

dj = Z;1' Zjr = Zjr_1 + (In), r =:'2,: .. ,mj·, 

Zjm;-l < dj, Zjm; ~ dj, j = 1,2, ... ,n, 
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and the 'system S as the fdllowiiig 

S = SeD, d) = {z = [Z1, •.. , zri]: Zi E [OZiit'" ;, Zi"';], i == 1,2, .. . ,n}. 

It holds that 

and 

. ' ... : 
inf Jlz - z'/I ~ d 

,,'6$ , 
for all zED, 

n 

,,. inf IIz - z'll ~ d 
"'E$ . 

for" all ,z E IT (dj, dj') 
i::=l 

.1 '·n 

, • m = IT mj , ';i 

.;=1., 

." ":' , 

.(11) 

where we denote by m = m[D, cl] the number of the elements of t~e 
system $. 

At the end of thil'! p~rtwe denote; 'the 'surroundings of a non­
em~ty set .X C En by thE'! symbol X[8). It means that 

X[6J = {z E En: Z =:1:1 + Z2, :l'lE X,Z2 E 8(8)}, 

where 8(6) is the 6-surroundings of zero in En. 

S. Main results. The aim of this section is to present the 
values j3 > 0 for which the relations (5), (6), (7), (8) hold. More 
precisely, we shall try to obtain the results for the case when either 
{ek(W)}f::l is a sequertce of independent random vectors or when 
{e(w)}f::_oo fulfils the cf>-mixing condition. 

Our investigation will be devided into two parts. We shall deal 
separately with the deterministic equivalent I and the determinis­
tic equivalent II. The reason for this is practical especially in t~e 
mathematical technic of proof. Moreover, the interval for j3 will 
be rather greater in the ,deterministic equivalent I. In detail, this 
interval does not depend'on the dimension of the random vector 
e(w). Further, the results achieved for this simpler case will be 
employed to obtain the results for t:r,e deterministic equivalent n. 
However, we start our· investigation by very simple case of deter-

. ministic equivalent I. By this access it will be seen the dependence 
of interval for j3 on the complexity of the corresponding problems. 
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a) Deterministic equivalent I. We shall consider a special, 
simple case, at the beginning. So first, let us assume that there 
exist a natural number 81 and continuous functions gHz), h:Cz ) , 
i = 1,2, ... ,81, defined on E, x En such that 

'1 
g(z, z) = Egt(z)hi(z). (12) 

,=1 

We shall see that in this very special case (however from the 
mathematical point of view enough important) the terminal result 
will be the same in the both considered cases. 

Theorem 1. Let X be a compact set,. the (unction 9(Z, z) 
fultlls the relation (12), where g;(z) and h:Cz), i = 1,2, ... ,81, are 
continuous, real valued, bounded functions defined on Z xX. If 
either 

or 
1. {e(W)}f:.l is a seque!!ce of independent random vectors 

2. {e"(w)}f:_oo is a strongly stationary random sequence ful­
filling the d>-mixing condition for wftich there exists 

--1 N-l 
Hrn N ~ (N - k)q,(k) < +00, N-oo L..,; 

4:=1 

then 

p{w: NI'l inf ENg(Z,e(w» - inf Eg(z,e(w») I> t} -(N-oo) 0 
",eX ",ex 

fort >0, i3E(O,t). 
Ifmoreover 

3. X is a convex set, 
4. hi( z) i = 1,2, ... , 8i, are convex functions on X, 
5. there exists i E {I, 2, ... ,8d such that hi (z) is a strongly 

convex with a parameter p > ° function on X, 
then also 
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for t > 0, !3 E (0,1/2). 
(Remark: .%N(W), x, N = ~,2, ... are defined by the relatiqn (4).) 
? ProOf. The assertion of Theorem 1 follows immediately from 
the next Theorem: It is sufficient to employe there the substitution 
t := (t/(NP» and generally knoW,J} limit prope.rties of th,ecorre­
spond~ng functions. 

Theorem 2~ Let x bf!a a compact set and the function g(~, z) 
fulfil the relation (12) where gHz) and h;~x), i = 1,2",.:,81, are 
continuous real valued functions defined on Z x X. Let further /(1, 

Ml be real valued constants such that 
:' ," , ) 

>\ 

'1. Ul('W)}~l is a sequence of independent random vectors, 
"'then' 

p{w: fj~~ENg(X,e(w» - j~~Eg(x,e(w))I'>t} 

~2S1 . exp { - 2:~2 2} for N = '1, 2, ... > t > 0, 
, 1 18 1 . 

(13) 

2. {e(w)}~_oo is a strongly stationary random sequence ful-
filling the q,-mixing cohdition the~ . 

. N = 1,2, ... , t > O. 
Ifmoreover 

3. X is a convex set, 
4. hHz) i = 1,2, ... ,811 arecon~.3x functions on X, 
5. there exists i E {I, 2, .. : ,SI} such that hHz) is a strongly 

convex with a paramet,er p> 0 fu.nction, 
then also .' . . 
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in the case 1 

(15) 

and in' the case 2 

2t 4K2:'1f2 N-l 
p{WJ: IiZN(WJ) - ill2 > -} ~ 28~ t2~/ [N + E(N -k)~(k)L " 

. P" .1:=1 •• ' ". 

for N = 1,2, ... , t >0., ' ~161 

The proof of Theorem 2 will b~ given in the Appendix. 
It follows from the assertion of Theorem 1 that the interval 

for /3 is the same in the both considered cases. According to well 
known results of [4,5, 16,32] we can recognize that it is not possible 
this interval to expand. However, Theorem 1 deals only ,with the 
very special form of the function g(:c, z). Further, we shall consider 
rather general case. 

If 

Theorem 3. Let 

1. X C En be .. compact set, 
2. g(:c, z) be ~ continuous, bounded function on X[d] x Z for. 

some d> 0, 
3.g(:c, z) be fo~ every z E Z cl. Lips~/litz func;ion of.:c E X[d] 

with the Lipschitz constant L not depending on z E Z. 

4. either 

or 

a) U.l:(w)}~=l is a sequence of independent random vec­
tors and simultaneously 0 < /3'< 1/2, 

b) {e(w)}f=_~ is a strongly statiohary random sequen­
ce fulfilling the rP-mixing conditioI'! for which "" 

_' -1 ,v-I , , J~ooN 2:(N - k)~(~) < +00, . 
, k=l 

and simultaneously 6 < P < 1/(~'+ 2), then 
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fot t·>O. 
Ifmoreover 

S. X is a convex set, 
6. g(z. z) is for every z e i a strongly convex with a pa.rameter 

p> 0 function of z e'X[d], 
then also . 

P{",: NPllzN("')- il12 > t} ~(N_oo) 0, . 

for t > O. 
To p.rove the assertion of Theorem 3'we shall employ some 

former results [10, 11]. However, we introduce them in a modified 
form. 

,,' Theorem 4. If the assumptions 1, '2,3 of Theorem 3 are ful­
filled and jf {ek(w nF:l is a sequence of independent random vectors 
then 

and simulta.neously (17) 

for 0 < t <3d a~d a constant M fulfilling the inequality lu(z, z}\ ~ M, 
z eX(d], z e Z. 

If moreover the assumptions 5, 6 of Theorem 3 are satisfied, 
then also 



508 Convergena: rate 

Theorem 5. If tbe assumptions 1, 2, 3 of Tbeorem 3 are ful­
filled and if {ek(w)}r=_oo is a strongly stationary random sequence 
fulfilling tbe </J-mixing conditions, tben ," 

p{w: I inf ENy(z,e(w)) - inf Eg(z,e(w») I > tL}' 
~EX ~EX - , 

t 36M2 N-l ' 

~m[X, (3')] t 2N2 [N + 2:(N --k)</J(k)J, 
, 1':1 ",",' 

and simultaneously (19) 
~.-,.:-

p{w: IEN9(~,e(w») -.Eg(z,e(w»)l > JL for at least one z E X[d]} 

t [ N -1 ] 36M2 " !' 
~m[X, (3')] N + E(N - k)</J(k) , ~2N2 ' ", "'. 

,1'=1" , " ' , . ., ' 

for 0 < t,< 3d and a constant M fulfiIli'ng th~ inequality ly{~:'z)I"~'M', 
z E X[d], z E z~ 

If moreover tbe assumptions 5, 6 of Tbeorem 3' ate $litlsfied, 
tben also 

The assertions given by the relations (17) and (19) follow im­
mediately from the results of the papers [10, 11]. (Theorem 2 and 
its proof in [10] and also Theorem 2 and the correspc;>nding proof 
in [11]). It remains to prove the relation (18), (20). However this 
results will be proved in the Appendix. Here we shall prove the 
assertion of Theorem 3 only. 

Proof of Theorem 3. To prove ,the assertion of Theorem 3.we 
shall first find an upper ~stima1e of the nu'mber m[X, d.]. F~r'this 
we shall verify the validity of the auxiliary ~sertion. " 

. . ',' . 

Lemma 1. If X C En is a nonempty, bounded set, d >"0, then~ 
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for t > O. 
Further, if we substitute (in Theorems 4, 5) t := t/(LNfJ) then 

there exists a natural number No and a constant K = K(n, X) such 
tha.t ... 

LNfJ lad X ..;n > 1 
t 

for N > No~ 

and simultaneously. 

. [ t] NnfJ 
m X, 3LNfJ ~ K(n;X)-v;-' (21) 

Now already the validity of the assertion of Theorem: 3 follows 
from the last inequality, Theorems 4 and 5 and well known limit 
properties of the corresponding functions. 

We have finished the pc;l.rt of the section 3 corresponding to the 
deterministic equivalent I. Comparing these results with the ones 
of the works [4,6] (where the problems of asymp~otic distribution. 
of -/N(ZN{W) - z) is discussed), we can believe that it is impossible 
to expand the interval for f3 at least in the case of independent 
ra.ndom samples. 1.;) 

Further, it follows from Theorem 1 that the same interval can 
be achieved in speCial cases for dependent samples too. Of course, it 
w~ done only for the case when the optimalized function satisfy the 
relation.(12) and the randomsamp:e satisfy the </>-mixing condition. 

The chance constrained stochastic programming problems will 
"be considered ih the next part of this section. We sh.all see that the 
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interval {pr (3 will be smaller everywhere, it means in the case of 
independeQt random samples too. This is evidently draw by new 

. ineccuraccy arising by the set X(a) approximation. 

b ) Deterministic equivalent II. We have already mentioned 
that employing the results of the works [12,13] we have to restrict 
the original stochastic problem in the case' of the deterministic 
equivalent ll. In detail, we have to deal with the original stochastic 
problems in which the random element. appears on ·the.constraints 
right-hand side only. So we shall aSsume that there exist real valued ' 
functions /;(z), i = 1,2, .. . ;l defined on En such that 

i= 1,2, ... ,to 

. Consequently t. = 8. Of course, the original optimalized function 
may depend on the random element as well. Now, we shall repeat 
the definition of some symbols in this case. 

Let fi(Z), i =.1,2, ... ,£ be real valued, continuous functions 
defined on En, n ~ 1, 

X=Et, 

ZcEt, I 
i 

Z(z) = {z E Et: Z = (Zl, ... ,Zt), 

X(a) = {z E E~,: P(Z(z)] ~ a} 

== XCI) 

== X(O) 

XN(a) = {z E E~: PN[Z(Z)] ~ a} 

fi(Z)~Zj, i=1,2, ... ,t.}, 
for a E (0, I), . 

for a> 1, 

for a < 0, 

fora· E (0, I), 

(22) 

where P[Z(z)] = P{w: e(w) E Z(z)}; PN[] = PN{-,w}is the empiri­
cal probability measure corresponding to the distribution function 
FN(')' Et = {z E En: Z = (Zl,'" ,zn), Zj ~ 0, i = 1,,2, ... , n}. 

Let further 

Z({3) = arg min Eg(z,e(w)), . .(~3) 
X(P) . 

zN(f3,w) = arg minENg(Z,e(w)) for/3E (0,1). 
XN(P) 
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If ~ > 0, a e (0, 1) 'are .arbitrary.chosen but fix in the sequel we set. 
the following assumptions. 

i) li(~)' i=1,2, ... ,l.·arerea.lvalued~ntinuous functionson.E~ 
such that 

a).li(O) = O,i=:1,.2, ..•. ,t,.oe.Em 
b) : there. exi~t. a~ constant 'Ylsuch that 

. n 

li{z) -./i(Z') )'Y1.2)Zj -:I;j), . 
i=1 ' ' 

for 'ev-erya:'= (a:l, ... ,.'Zn). :Z' = (zL ..... z~).a: ?;a:' component­
wise, i·=1 .. 2 •... jl.z.;z'eB:, 

c ) there·:exists a constant 'Y2> ° suth that 
: . 

for i = 1,2, ... ,£, z,z' E X(a,.2c), z <z' componentwise, 
. X(a,c5) is.defined by the following relation 

X(a) cS) = {z =Zl + Z2 :zl.E X(a), Z2 E B(c5)} , 
• 

where 8(6) denotes thecS~surrounding of 0 E En. 
ii) e(w) fulfils the conditions: 
a) the probability measure of the random vector e(w) is abso­

lutely continuous with respect to the Lebesgue measure in EL. 

Let us denote by h(z) the probability density corresponding 
t.O' the.distributionfurictionF(z) of the random vectore(w); 

b) there exist real numbers Cj, j = 1,2, ... , £ such that Cj :> 0 and 
Z=n;=l(O;Cj) (it means P{w: e(w)'E n1=1(O,Cj)} = 1); 

c) there exist d~, 'd2 suchthat . 

Hi) 

1 

O<t11~'h(z) ~t12for every .. z EII(O,Cj). 
. j=1 

a.) .g(z.z).is abounded function on Eiax Z, 
b) .g(z,.z) is for every .ze Z a Lipschitz function of z·E X(o,6) 

.with Lipschitz constant L not depending on: E Z, 
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iv) at least one of the following assumptions is satisfied: .,: 
a) {ek(w)}f=l is a sequence of i~dependent random vectors and • 

. simultaneously 0 < /3 < l/(U), '. " .. .t .. 

b) {e(w)}f=_oo is a strongly stati,o~ary rando~ seque~ce fulfill~; 
ing the cfo-mixing condition for which' !' 

__ I N - 1 . 

J~ooN E(N - k)~(k) < +00 
k=l . 

and simultaneously 0 </3 <, l/«n + 2)£). 
v) g(z,z) is for every z EZlstrongly co~vexwith parameter p > 0 

function on X(a,c), 
vi) fi(Z), i = 1,2, ... ,l are convex function on Et, 

vii) the probability measur~ corresponding to F(z) is logarithmic 
concave. 
Now we can already introduce the main result of this part of 

the paper. ' . 

Theorem 6. Let X = Ei;and the assumptions i, ii, iii, iv be 
fulfilled for given arbitrary a E (0,1), c> O. Ift > o then 

p{w: NI'l inf -E};(z,e(w)) - in~ EN9(-;;,e(w)} I> t} '-'(N-oo) O. 
zEX(a) I. ZeXN(Q) . 

I ' 

If m9reover the a.4sumptio~s v, vi, vii are [/:flfilled, then itlso 

P{w: 'N,BllzN(a,w) - z(a)W>t} -(N-o,;) 0 .. 
I ' . . 

To prove the assertion of Theorem 6 we shall employ the former 
results [13]. However we shall have to' employ them in modified' 
forms, again. . 

,!,heorem 1. Let a E (0,1), c > 0, t > 0, lo = 4( ..;n/"n») 
\!2t/(!91). Let, further, the assumptions i, ii, iii be fulfilled. If 
d < min(c,t/6), (..;n/('Yl»)\!2t/(!91) < C, !92'Y2dL:=1 fI#i Cv < t/6, M 
is a constant for which Ig(z, z)1 ( M, z E X(a,2c), z E Z and if 
{ek(w Hf::l is a sequence of independent random vectors, then 

p{w: 1 inf Eg(z,e(w» - inf EN9(Z,e. (w»)1 > toL}' 
zeX(a) ZeXN(Q)" 

(2m[X(a, 2c), d] exp{-Nt2 /18} 

+ 2m[X(a,2c), d]exp{-Nt5L2 /4 . 18M2}. 
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• If moreover the assumptioDs v, vi, vii are fulfilled, then also 

p{w: "~N(~'W) _ ~(~)1I2 ~ 4t;} 

~6~[X(a, 26),d] exp{-:-Nt2 lIS} (25) 

+ 4m[X(~, 26), dlexp{ -Nt~L2 14. 18M2}. 

Theorem 8. Let ~ E (0, 1), 0 > 0, t > 0, to = 4( vln/( 'n» 
·t/2tl('lJ1). Let, further, the assumptions i, ii, iii be fulfilled. If 
€I < min(o, tI6), (vln/( id) ij2t/( 'lJ1 ) < 0, 'lJ21~'d E:=1 IIII;ti CII < t/6, M 
is a constant for which Ig(z, z)1 ~. M, z E X(a, 26),'z E Z and if 
{ek(wHr:_oo is a random sequence fulfillihga 4>-mixing condition, 
then 

p{w: I in! Eg(z,~(w» - inf EN9(Z,~(w»1 >toL} 
X(a) . XN(a) 

N-l 36.4 4. 36M2 (26) 
~ m[X(a, 26), dJ [N + E(N - k)4>(k)] [t2 N2 + L2t2 N2 ]. 

1:=1 0 

If moreover the assumptions v, vi, vii are fulfilled, then also 

{ . t L} P w: IIZN(~'W) - z(a)112 ~ 4-;-
'N-1 . 36.4 

~3m[X(a,26), dJ[N + E(N - k)4>(k)] '-t2N2 (27) 
k=1 

N-1 4 "6M2 
+2m[X(a,2c5),dJ{N+ E(N-k)4>(k)]. ~2;2N2' 

k=1 0 

The assertions given by the relations (24) and (26) follows imme­
diately from the results of the paper [13]. It remains to prove the 
relation (25), (27). The proof of this results will be given in the 
Appendix. Here we shall prove the assertion of Theorem 6, only. 

Proof, of Theorem 6, To prove the assertion of Theorem 6 
we shall have first to determine an upper estiIpat~ of the number 
m[X(a, 20), d] for d = t/(7NP). However, employing the results of 
Lemma 1 and further following the er rresponding part of Theorem 
3 proofwe obtain that -

'. _. NnP 
m[X(a,2c5),dj ~ k(n;X(a»Tn' 
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for enough large N and some constant k(n,X(a)). 
. Now already, the validity of the assertion of Theorem 6 fol­
lows from the last inequality; TheOrems 7 a.nd 8, the substitution 
to = t/(LNfJ) and well known limit properties of the corresponding 
functions. 

4. Appendix. The aim of this section is to give a proof of the 
introduced but unverified results. First, we prove some a.uxiliary 
assertions. 

Lemma 2. Let KeEn be a non-empty, compact convex set. 
Let, further, h(.t) be a strongly convex with a parameter p > ), con­
tinuous, real valued function defined qn K. Ifzo E K is determined 
by the relation 

then 

for every z E K.· 

Zo = argminh(z), 
:::eK 

Proof. We ref~r to the paper [14], for this proof. T.here namely, 
the proof of the ~orresponding assertion for concave functions is· 
presented. Besides this, the assertion of Lemma 2 has already been 
introduced in (28}, too. 

If we denote by the symbol B. the Borel er-algebra in E, then 
we can remember one well known inequality from the probability 
theory. 

Lemma 3. If 

1. K:(.z) is a measurable (according to B.) function defined on E. 
such that -there exists a constant M fulfilling the inequality 
1K:(z) I ~ M for all z E E., 

2. {ek(w)}:l is a sequence ofindependent'ranoom vectors, 
then 
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for. every t EEl, t > O. 
Proof. The inequality introduced in Lemma 3 has been first 

proved in [7]. 
Further, we present one result for ~mixing random sequences. 

Lemma 4. If tbe assumption 1 of Lemma 3 is fulfilled and if 
{eJ:(w) t;:-oo is' a strongly stationary random sequence fulfilling the 
4>-mixing condition, then 

Proof. First, it follows from Lemma 2, Chapter 4 of [1] . 

for r '# k, r,k = ... -2,-1,0,1,2, .... 
Since it follows from Chebyshev's inequality that 

p{w: IEN,,(e(W» - EIC(e(w»·1 > t} 
1 N . . 2 

~ t2N2EIl: [K(ei(W) - 'EK(e(W»] I 
J:=1 

and since 

E[K(ei(W) - EIC(e(w»] = ° for every i = ... ,-2,-1,0,1,2, ... , 

we obtain the assertion of Lemma 4 immediately from the rela­
tion (28). 

Now, we can already present the proof of Theorem 2. 
Proof of Theorem 2. Let t > ° be arbitrary given. Since it 

follows from the relation (12) that ., 
IE~g(z, e(w» - Eg(z,e(w)) I ~ L: M1IEN9i (e(w» - Egi (e(w» \, 

i=l 



, Gonve'!lence rotfF'" 

we can obtain successfully further 

p{w: I' inf ENj(~,e(w» - ~ Eg(~,e(w»1 > t}' ," 
:r:EX :r:EX 

,~p{w:IEHg(:r:,{(w)}~Ej(t,e(w»I> t folat least one :r:!~ X} 

,~' ~.~{",: :\EN9;(e(W» - ~g;(e(w»i: ~ ~81}' ,., ';' (29) 

Employing now Lemma 3 and Lemma 4 we obtain imme(ii~tely the 
validity of the assertion (13) and (14). " ' 

It remains to prove tbe valid,lty' oft.b.e relations (IS}, (16) . 
. However, evidently if. the assuuiptions3, 4, 5 of Theore~ 2 are· 
satisfied then EU(z,e(w» is a strQngly con'VeX with the par~eter 
p function. So, according to Lemma 2 it is 

, ' . ~ • . . "";. f. . 

IIzN(~) -:- z1I2< (;)IE9,zN(w):e(w» -'E9(z,e(w» I, 

for allw eO, N = 1,2, ... and Eg(z1V(w),e(w» = [Eg(z,e(w»]:r:=N<",r . 
Employing the triangular inequality we'get· 

!lzN(W) - ili2'~ (!) {IEj(ZN(W'),e(w» .: E~;(f~(~ ),e(w) I 
, I ;IEN9(iN(W),e(W~>':"EU(z,e(w)\}, 

, I· . 
for ~ll.w e 0, N = 1,2, ... and so also 

I 
p{w: "/lfN(W) _fIl2 "> t· (;)} 

~P{w. :'I~q(z,~(w) - EN9(:r:;f~(w)H.> (~) for at'l~t one:r: e~} 

+p{w; iJ:1ENu(z;e(w» - :r:~~g(~"e(w»L>, (~)}. 
Now al~ywe obtain theya,lidity of the relations (15); (16) 

on the basis of the inequalities ,glv6n by,the'relatiQns (13), (14), 
(29), 1emm.a/~ ~4 Lemma 4. By.thisw:e ha.ve' lni~lied the proof 
of Theorem~. . ,. _ '. V· 

Theore~4 and 5 generalize ~the r~ults of-Theorem 2 to ra~h~ 
great class of the optim~ized fu~cti()n$. 'Qf c;:ou~" t4e ~hieved up­
per bound is', higher. Na.m~y, there"a,p~theia.ctor ~(X, (t/3)) 
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in. the relations (17), (18), (19), (20). We shall present here the 
proof of the new part of the assertion of Theorem 4. 

Proof of Theorem 4. The assertion given by the relations (17) 
follows immediately from the results of the, paper [10} (Theorem 
2 and its proof).' Sri it remain~: to prove theassertjon given by 
the relation (18). Since Eg(z, e(Wt». i~ a strongly convex with the 
parameter p > 0 function on X[d}·W'e can apply the idea of the 
second part proof of Theor~m 2 to get successfully 

. .h. 
. 2 ' 

IIzN(w) - zII2 ~(p) IEg(zN(",),e(w» - Eg(z,e(w» I 

~(~) {IEg(ZN(W),e(w» - ENU(ZN(W),e(w» I 
+ /ENg(ZN(W),e(w» - Eg(z,e(w» Il, 

for all wE 0, N = 1,2, ... and Eg(ZN(W),e(w») = [Eg(z,e(w»J~='-N("')' 
, However, now we can;uready see that the validity of (18) fol .. 

lows immediately from the last inequalitieS systejIl and from the 
relations (17). . 

Proof of 'Fh~f'em5. As the proof of Theorem 5 is verysiJnilar 
to the proof of Theo~m 4, we omit it. It is necessary to employ 
there the results of:tn:e paper [11] (Theorem 2,and the correspond.;. 
ing proof) and Lemma 4 instead of the results' oft he paper [101' aild 
Lemma 3. 

We have finished the proof of the assertions corN~spondjng to 
the deterministic equivalent 1. Now. We shall <leal with the a&set,tions 
belonging to the d~terministic eq\iivalent II. 

Proof of Theo-teffl 7. The proof of the relation (24) is given jn 
[13]. Since this proof is rather cQmplieated and lO,Jlg we shall npt 
repeat it here,~ However we shall verify <;arefully the, validity of the 
relation (25). For this let t > 0 fulfil the assumptions of Theorem 7. 
We define the set Qc by the relatil:>h ! 

The following auxiliary assertion follows from [13]. 
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Lemma 5. Let er e (O, 1), {; > O. Iftbe assumptions i, ii are ful­
filled and jf ul:(Wnr=l is a sequence ofindependent random vectors 

. then for t > 0, d > 0 sucb tbat d < c, 

then 
P{w: X(a+t)CXN(a)CX(a-t)} 

~ 1- 2m[X(a, 26), cl] exp{ -Nt2 /18}. 

Proof. It is proved in [13] (Lemma 5) that under our assump­
tions 

p{w: X(a+t)CXN(a)CX(a-t)} 

~ 1- .2: p{w: !PN(Z(ZV) - P(Z(zll)1 > ~}. 
z· ES(X( (>.26),d) 

However now already the assertion of Lemma 5 follows immediately 
from the last ineq.uality, Lemma 3 and the definition of the number 
m"\X(a, 26), d). , 

We can confinue in the proof of Theorem 7. 
According to Lemma 5 we obtain that 

P{w: we' 0 - Ot} ~ 2m[X(a, 26), cl] exp{ -Nt2 JIS}, 

and so also 

{ 2 toL} P w: II.2:N(o,w) - z(a)1I ~ 4p 

~2m[X(a,26),cl]exp{-Nt2/18} (30) 

+ p{ [w: IlzN(o,w) - z(a)112 ~ 4 t~L] n rh}. 

Since 
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anq since Eg(x,e(w)) is a strongly convex with the parameter 
p> 0 function and X(a) is a convex set [19J, we obtain for w E Q~ 
successively 

. 4 
IIxN(a,w) - .1l(~)W ~(-HIEg(xN(a,w),e(w» - Eg(x(a - t),{(w)1 

. p 

+ IEg'.1l(a),{(~» - Eg(x(a - t),{Cw)1} 

~(!){IEg(xN(a,w),e(w» - EN9(xN(a -t),eCw))1 
p . 

. + IEN9(XN(~'W), e(w» - Eg(x(a){(w))1 

+ IEg(x(a),e(w» -- Eg(:c(a - t),e(w))l· 

+ IEg(x(a),€(w») - Eg(x(a - t),e(w»I}, (31) 

where Eg(xN(a,w), e(w)) = IEg(x,e(w))]Z=zN(a,w)' 
The next auxiliary assertion was proved in [13} too. 

Lemma 6. Let a E (0,1). If the assumptions i, ii are fulfilled 
. the~ for t > 0 the inequality 

A r' ) ),.;n {/2t . . '-"lX(a ,X(a- t J < -:x; ~~) 

bolds. 

However according to this assertion and to the relations (24), 
(31) it is easy to see that the relation (25) will be proved if we 
verify the relation 

p{w ~ Of: IEg(xN(a,w),e(w)) - ENg(x~(a,w),e(w»1 

+ IEN9(XN(a,w),e{w» - Eg(x{a),e(w»1 ~ (t~L)} 
. ~4m[X( a, 26). d) exp[-Nt2 /18] 

+4m[X(a, 26), d)exp{-Nt6L2/4 . 18M2 }. 

However as 

p{w E Ot: IEg(xN(a,w),e(w» _ EN9(xN(a,w),.e(w»1 ~ (t~L)} 

(32) 

. ~ p{w: IEg(xN{a,w),e(w))- EN9(xN(a,w), e{w»l ~ (t~L) 
for at least one x E X(a, 26)}, 



520 

and~~{af,26) is acQIll,paGi set'Wei,see that the v~idity of the 
.relathm:;~'~21fQUowsj~tn'edia,t~ly,·~>y 1:hepr~(n 4 alldtheh~~ual-
itY{2-l1). '. 

,:l\9~rem7 de~l,'Withi,'thec¥e of indepetldent randQIIJ~~m pIes. 
t:r.·h;~fiki7milxiJj'gAA-sels!.(:on$id~r~din ''£lieo~;e.S~nce th~ p.roof of 
Xh~i~m! 8'i~;!yerysiIIiiI8J'.~~jh~ p,rp9f;ottll~ofem 7we9mit it. 
"'~~;~~~emberJiE!re(jnlYith~t ii1~~eadofthla4$ultS9f Theorem 4 in 
; this,e~e til~l. res9ItsQf';;tbeo~m.i,5 ,i~'~I.D~.,l():yed. 

. . . "":'. " 

':J1EMAIiI<. 'A ... pr06tQfif,l.ea.s:uta;l?il1ty ()f the random vectors 
ZN(W), ,ZN(OIW}i'S ettHted ,Ih,tl~'ispa.~t. 'But itfoUows from the 

·PCLper (30]. 

5. Conclusion. Thep,reseIlted paper have dealt with conver­
gence rate of theempirical~tin,1at~s in stochastic programming 
priQbl~ms. Former results on this ,topic are improved. 

It is Seen that the interval for f3 fulfiiling the relations (5), 
(6), (7)., (8) are greater in simplest case, of course. Especially this 
interval is rather smaller in thec~e of deterministic equivalent II.· 
This reality iseviflently caused by new inaccuracy that arised ,by 
the approxima.tiofo of the cOllstraints set X(o).We ~an recognize 
this following thkproofof the corresponding results and prOdfs, 
introduced in [13]. However this question will not he discussed 
more in this pap~r. 
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