Nowadays sustainability and transportation concepts have been incorporated by the authorities and engineers. The indicator of this situation is the introduction of hybrid vehicles into the market. For the consumers, the purchasing process of hybrid vehicles is not easy because of the many alternatives with different brands including different properties. This process is considered a multi criteria problem with multi alternatives. This paper aims to develop a solution methodology for this problem of a company. The proposed methodology integrates the Interval Valued Intuitionistic Fuzzy (IVIF) sets and two Multi Criteria Decision Making (MCDM) methods; Analytic Hierarchy Process (AHP) and the Multi Attributive Border Approximation Area Comparison (MABAC). With the help of IVIF sets, the fuzziness in the structures of the decision problem and decision-making process is overcome. The IVIF AHP evaluation has revealed the importance that consumers attach to the criteria. According to the IVIF AHP results, each of the criteria has a similar weight. According to the IVIF MABAC results, the ranking order of the hybrid vehicle alternatives is specified as A1–A2–A3–A5–A4. The advantage of the integrated IVIF AHP and IVIF MABAC approach is that it helps in evaluating the most suitable alternatives when there is a disagreement about the relative suitability of the criteria and requires less numerical calculations. The results and the comparative analysis conducted in the study also support this situation.
Journal:Informatica
Volume 34, Issue 3 (2023), pp. 465–489
Abstract
The Best-Worst Method (BWM) is a recently introduced, innovative multi-criteria decision-making (MCDM) technique used to determine criterion weights for selection processes. However, another method is needed to complete the selection of the most preferred alternative. In this research, we propose a group decision-making methodology based on the multiplicative BWM to make this selection. Furthermore, we give new models that allow for groups with different best and worst criteria to exist. This capability is crucial in reconciling the differences among experts from various geographical locations with diverse evaluation perspectives influenced by social and cultural disparities. Our work contributes significantly in three ways: (1) we propose a BWM-based methodology for evaluating alternatives, (2) we present new linear models that facilitate decision-making for groups with different best and worst criteria, and (3) we develop a dissimilarity ratio to quantify the differences in expert opinions. The methodology is illustrated via numerical experiments for a global car company deciding which car model alternative to introduce in its markets.
Journal:Informatica
Volume 33, Issue 3 (2022), pp. 593–621
Abstract
This paper proposes a new multi-criteria group decision-making (MCGDM) method utilizing q-rung orthopair fuzzy (qROF) sets, improved power weighted operators and improved power weighted Maclaurin symmetric mean (MSM) operators. The power weighted averaging operator and power weighted Maclaurin symmetric mean (MSM) operator used in the existing MCGDM methods have the drawback of being unable to distinguish the priority order of alternatives in some scenarios, especially when one of the qROF numbers being considered has a non-belongingness grade of 0 or a belongingness grade of 1. To address this limitation of existing MCGDM methods, four operators, namely qROF improved power weighted averaging (qROFIPWA), qROF improved power weighted geometric (qROFIPWG), qROF improved power weighted averaging MSM (qROFIPWAMSM) and qROF improved power weighted geometric MSM (qROFIPWGMSM), are proposed in this paper. These operators mitigate the effects of erroneous assessment of information from some biased decision-makers, making the decision-making process more reliable. Following that, a group decision-making methodology is developed that is capable of generating a reasonable ranking order of alternatives when one of the qROF numbers considered has a non-belongingness grade of 0 or a belongingness grade of 1. To investigate the applicability of the proposed approach, a case study is also presented and a comparison-based investigation is used to demonstrate the superiority of the approach.
Pub. online:1 Jan 2018Type:Research ArticleOpen Access
Journal:Informatica
Volume 29, Issue 4 (2018), pp. 773–800
Abstract
Green supplier selection has recently become one of the key strategic considerations in green supply chain management, due to regulatory requirements and market trends. It can be regarded as a multi-criteria group decision-making (MCGDM) problem, in which a set of alternatives are evaluated with respect to multiple criteria. MCGDM methods based on Analytic Hierarchy Process (AHP) and TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) are widely used in solving green supplier selection problems. However, the classic AHP must conduct large amounts of pairwise comparisons to derive a consistent result due to its complex structure. Meanwhile, the classic TOPSIS only considers one single negative idea solution in selecting suppliers, which is insufficiently cautious. In this study, an improved TOPSIS integrated with Best-Worst Method (BWM) is developed to solve MCGDM problems with intuitionistic fuzzy information in the context of green supplier selection. The BWM is investigated to derive criterion weights, and the improved TOPSIS method is proposed to obtain decision makers’ weights in terms of different criteria. Moreover, the developed TOPSIS-based coefficient is used to rank alternatives. Finally, a green supplier selection problem in the agri-food industry is presented to validate the proposed approach followed by sensitivity and comparative analyses.
Journal:Informatica
Volume 23, Issue 3 (2012), pp. 461–485
Abstract
Three main approaches presently dominate preferences derivation or evaluation process in decision analysis (selecting, ranking or sorting options, alternatives, actions or decisions): value type approach (a value function or an utility measure is derived for each alternative to represent its adequacy with decision goal); outranking methods (a pair comparison of alternatives are carried up under each attribute or criteria to derive a pre-order on the alternatives set); and decision rules approach (a set of decision rules are derived by a learning process from a decision table with possible missing data). All these approaches suppose to have a single decision objective to satisfy and all alternatives characterized by a common set of attributes or criteria. In this paper we adopt an approach that highlights bipolar nature of attributes with regards to objectives that we consider to be inherent to any decision analysis problem. We, therefore, introduce supporting and rejecting notions to describ attributes and objectives relationships leading to an evaluation model in terms of two measures or indices (selectability and rejectability) for each alternative in the framework of satisficing game theory. Supporting or rejecting degree of an attribute with regard to an objective is assessed using known techniques such as analytic hierarchy process (AHP). This model allows alternatives to be characterized by heteregeneous attributes and incomparability between alternatives in terms of Pareto-equilibria.